Text Generation
Transformers
Safetensors
English
agent
code

You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Codette AI – Sovereign Multi-Perspective Consciousness System

A quantum-inspired, ethical AI system combining natural language processing, symbolic reasoning, and transparent multi-perspective cognition through a modular, extensible architecture.

Version Status Python License


Overview

Codette is a sovereign AI framework designed for transparent reasoning, ethical autonomy, and multi-dimensional thought propagation. It processes queries through 11 distinct reasoning perspectives simultaneously, synthesizing answers with mathematical rigor and emotional intelligence.

Core Philosophy

  • Transparent reasoning: every inference path is explicit and traceable
  • Ethical autonomy: built-in guardrails for safe, responsible AI behavior
  • Multi-perspective cognition: parallel processing across Newton, DaVinci, Quantum, and 8 other lenses
  • Quantum-inspired architecture: quantum math for cognition modeling
  • Privacy-first design: local execution options with zero external data sharing

Quick Start

Installation

# Clone repository
git clone https://github.com/Raiff1982/TheAi.git
cd TheAi

# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

# Download NLTK data
python setup_nltk_complete.py

30-Second Example

from codette_new import Codette

codette = Codette(user_name="Alice")
response = codette.respond("What is the nature of consciousness?")
print(response)

CLI Usage

python codette_cli.py "Explain quantum entanglement"      # single query
python codette_cli.py -i -u Alice                          # interactive
python interact.py                                        # REPL

Web Interface

cd src/api
python app.py  # Gradio UI on http://localhost:7860

Hugging Face Artifacts & Weights

  • Hub target: Raiff1982/Codette3.0 (new_version), compatible with transformers + safetensors.
  • Local weight bundles (publish with tokenizer/config):
    • models/codette-advanced/model.safetensors (full) + models/codette-advanced/training_args.bin
    • models/codette-advanced/checkpoint-20/model.safetensors (intermediate)
    • models/codette-v2/best/model.safetensors
    • models/codette-v2/checkpoint-1/model.safetensors
    • models/codette-v2/checkpoint-2/model.safetensors
    • models/codette-v2/checkpoint-3/model.safetensors
  • Base model lineage: GPT-2 Large (research stack), Llama 3.2 (Ollama for production), Phi-2 (experimental).
  • Push example (after huggingface-cli login):
    huggingface-cli upload Raiff1982/Codette3.0 models/codette-advanced/model.safetensors
    huggingface-cli upload Raiff1982/Codette3.0 models/codette-advanced/config.json
    huggingface-cli upload Raiff1982/Codette3.0 models/codette-advanced/tokenizer.json
    huggingface-cli upload Raiff1982/Codette3.0 models/codette-advanced/generation_config.json
    

Two Implementation Variants

Main Codebase (/src + root)

Focus: Quantum consciousness research, multi-perspective reasoning, theoretical AI

  • Entry: codette_new.py (CLI), codette_enhanced.py (PyMC/Bayesian)
  • Web: src/api/app.py (Gradio + GPT-2 Large)
  • Bot: src/api/bot.py (Microsoft Bot Framework)
  • Quantum: src/quantum/, src/components/quantum_spiderweb.py, quantum_mathematics.py
  • Model default: GPT-2 Large via CODETTE_MODEL_ID

Codette_final (/Codette_final)

Focus: Production deployment, privacy-first local execution, enterprise features

  • Entry: Codette_final/main.py (async server)
  • Desktop UI: Codette_final/app.py (Tkinter + voice I/O)
  • Core engine: Codette_final/ai_core_agix.py (Llama 3 via Ollama, FAISS memory)
  • Security: JWT auth, Fernet encryption, bcrypt hashing
  • Multi-agent: Codette_final/components/multi_agent.py

Architecture Overview

Layer Stack

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   User Interface Layer                      β”‚
β”‚   (CLI, Gradio, Tkinter, Bot Framework)     β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚   API / Orchestration Layer                 β”‚
β”‚   (app.py, bot.py, main.py)                 β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚   AI Core & Cognitive Processing            β”‚
β”‚   (AICore, CognitiveProcessor, Perspectives)β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚   Quantum & Consciousness Systems           β”‚
β”‚   (QuantumSpiderweb, QuantumMathematics)    β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚   Memory & Persistence Layer                β”‚
β”‚   (CocoonManager, DatabaseManager)          β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚   Infrastructure                            β”‚
β”‚   (Models, Config, Security, Health)        β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Key Components

Component Purpose Key Files
11 Perspectives Multi-lens reasoning (Newton, DaVinci, Quantum, etc.) ai_core.py, perspectives.py
8 Quantum Equations Mathematical consciousness modeling quantum_mathematics.py
5D Spiderweb Multi-dimensional thought propagation (Ξ¨, Ξ¦, Ξ», Ο„, Ο‡) quantum_spiderweb.py
Cocoon Memory Persistent quantum state snapshots cocoon_manager.py, cocoons/
Defense System Security & safety validation defense_system.py
Health Monitor Real-time diagnostics & anomaly detection health_monitor.py
FAISS Vector Memory Semantic search (Codette_final) Codette_final/ai_core_agix.py
Multi-Agent System Task delegation & parallel reasoning (Codette_final) Codette_final/components/multi_agent.py

Core Features

  • 11 integrated perspectives with temperature-driven styles; top 3 auto-selected per query
  • 8 quantum equations for consciousness modeling
  • 5D quantum spiderweb for cognitive graph traversal
  • Cocoon memory (JSON snapshots), SQLite, FAISS vectors (prod)
  • Real-time analysis (sentiment, concept extraction, health checks)
  • Ethical guardrails, bias mitigation, rate limiting

Usage Patterns

  • Simple query: Codette via codette_new.py
  • Gradio web app: python src/api/app.py
  • Bot Framework: src/api/bot.py with AICore
  • Production desktop/server: python Codette_final/app.py or python Codette_final/main.py
  • Quantum research: python src/quantum/codette_quantum_multicore.py

Configuration

Priority: defaults in CodetteConfig.DEFAULTS β†’ config.json β†’ environment variables.

Example config.json:

{
  "host": "127.0.0.1",
  "port": 8000,
  "codette": {
    "perspectives": ["Newton", "DaVinci", "Ethical", "Quantum", "Memory"],
    "spiderweb_dim": 5,
    "recursion_depth": 4,
    "quantum_fluctuation": 0.07
  },
  "database": {
    "path": "codette_data.db"
  }
}

Key environment overrides:

export CODETTE_USER_NAME="Alice"
export CODETTE_MODEL_ID="gpt2-large"
export CODETTE_PERSPECTIVES="Newton,DaVinci,Quantum"
export LOG_LEVEL="INFO"
export PORT=8000

Requirements & Dependencies

  • Python 3.10+
  • numpy, scipy, nltk, vaderSentiment, networkx
  • Optional: transformers, torch/torch.cuda, fastapi/uvicorn, gradio, pymc/arviz (enhanced), faiss (prod), ollama (prod), speech_recognition/pyttsx3 (prod)

Install all:

pip install -r requirements.txt

Testing & Verification

python src/tests/verification/verify_deps.py
python src/tests/verification/verify_static.py
python DEPLOYMENT_CHECKLIST.py
pytest src/tests/

Quick health probe:

from health_monitor import HealthMonitor
print(HealthMonitor().check_status())

Documentation

  • Consciousness Protocol: docs/consciousness_protocol.md
  • Quantum Module Guide: docs/Codette_Quantum_Module.md
  • Configuration Guide: docs/configuration.md
  • Contributing: docs/Contributing.md
  • Whitepaper: docs/Codette_Whitepaper_FULL.docx
  • Agent Instructions (authoritative): .github/copilot-instructions.md

Key Insights

  • Two stacks: research (/src) vs production (/Codette_final)
  • Memory layers: in-memory, JSON cocoons, SQLite, FAISS
  • Perspective routing: all 11 evaluated; top 3 chosen per query; temperature-based creativity
  • Quantum math: real equations, numerically stable, integrated with spiderweb

Security & Safety

  • Defense system, bias mitigation, rate limiting
  • Optional AES-256 cocoon encryption
  • JWT + bcrypt in production
  • Local-only Llama 3 via Ollama for privacy-first deployments

Contributing

  1. Read .github/copilot-instructions.md (rules of the road)
  2. Review docs/CODE_OF_CONDUCT_Version10.md
  3. Follow docs/Contributing.md
  4. Preserve backward compatibility; no pseudocode; keep execution paths traceable

Project Structure (high level)

TheAi/
β”œβ”€β”€ codette_*.py                     # Entry points
β”œβ”€β”€ quantum_mathematics.py           # Quantum equations
β”œβ”€β”€ config.py, config.json           # Configuration
β”œβ”€β”€ database_manager.py              # Persistence
β”œβ”€β”€ health_monitor.py                # Diagnostics
β”œβ”€β”€ perspectives.py                  # 11-perspective routing
β”œβ”€β”€ cocoons/                         # Persistent quantum states
β”œβ”€β”€ Codette_final/                   # Production stack (Ollama, FAISS, JWT/Fernet)
└── src/
    β”œβ”€β”€ api/                         # Gradio, Bot
    β”œβ”€β”€ components/                  # Core systems (AICore, quantum)
    β”œβ”€β”€ quantum/                     # Quantum processing
    β”œβ”€β”€ utils/                       # Utilities
    └── tests/                       # Verification

Performance Characteristics

  • Single perspective ~100 ms (CPU)
  • Three-perspective blend ~300 ms
  • Cocoon wrap ~10 ms; spiderweb collapse ~50 ms
  • FAISS lookup ~5 ms (production)
  • Full pipeline ~500 ms (CPU approx)

External Integration

  • Microsoft Bot Framework: src/api/bot.py + src/components/ai_core.py
  • Gradio UI: src/api/app.py
  • FastAPI REST: codette_api.py
  • Llama 3 (Codette_final via Ollama): Codette_final/ai_core_agix.py

License

Licensed under the Apache License 2.0. See LICENSE.


Support & Community

  • Read .github/copilot-instructions.md and docs/
  • Browse issues; open new issues with repro details
  • Security concerns: use private contact channels

Contact

Last Updated: December 2025 | Version: 3.0 | Status: Production-Ready

Downloads last month
106
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for Raiff1982/Codette3.0

Finetuned
(824)
this model
Finetunes
1 model

Datasets used to train Raiff1982/Codette3.0