File size: 12,446 Bytes
3996d8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
<h1 style="display: flex; align-items: center; gap: 10px; margin: 0;">
Kimi-K2-Instruct-quantized.w4a16
<img src="https://www.redhat.com/rhdc/managed-files/Catalog-Validated_model_0.png" alt="Model Icon" width="40" style="margin: 0; padding: 0;" />
</h1>
<a href="https://www.redhat.com/en/products/ai/validated-models" target="_blank" style="margin: 0; padding: 0;">
<img src="https://www.redhat.com/rhdc/managed-files/Validated_badge-Dark.png" alt="Validated Badge" width="250" style="margin: 0; padding: 0;" />
</a>
## Model Overview
- **Model Architecture:** Mixture-of-Experts (MoE)
- **Input:** Text / Image
- **Output:** Text
- **Model Optimizations:**
- **Activation quantization:** None
- **Weight quantization:** INT4
- **Release Date:** 07/15/2025
- **Version:** 1.0
- **Validated on:** RHOAI 2.24, RHAIIS 3.2.1
- **Model Developers:** Red Hat (Neural Magic)
## 1. Model Introduction
This model was obtained by quantizing the weights of **`Kimi-K2-Instruct`** to the INT4 data type. This optimization reduces the number of bits used to represent weights from 16 (FP16/BF16) to 4, reducing GPU memory requirements (by approximately 75%). This weight quantization also reduces the model's disk size by approximately 75%.
The original `Kimi K2` is a state-of-the-art mixture-of-experts (MoE) language model with 32 billion activated parameters and 1 trillion total parameters. Trained with the Muon optimizer, Kimi K2 achieves exceptional performance across frontier knowledge, reasoning, and coding tasks while being meticulously optimized for agentic capabilities.
### Key Features
- INT4 Quantization: This model has been quantized to INT4, dramatically reducing memory footprint and enabling high-throughput, low-latency inference.
- Large-Scale Training: Pre-trained a 1T parameter MoE model on 15.5T tokens with zero training instability.
- MuonClip Optimizer: We apply the Muon optimizer to an unprecedented scale, and develop novel optimization techniques to resolve instabilities while scaling up.
- Agentic Intelligence: Specifically designed for tool use, reasoning, and autonomous problem-solving.
### Model Variants
- **Kimi-K2-Base**: The foundation model, a strong start for researchers and builders who want full control for fine-tuning and custom solutions.
- **Kimi-K2-Instruct**: The post-trained model best for drop-in, general-purpose chat and agentic experiences. It is a reflex-grade model without long thinking.
- **RedHatAI/Kimi-K2-Instruct-quantized.int4 (This Model)**: An INT4 quantized version of `Kimi-K2-Instruct` for efficient, high-performance inference, validated by Red Hat.
<div align="center">
<picture>
<img src="figures/banner.png" width="80%" alt="Evaluation Results">
</picture>
</div>
## 2. Model Summary
<div align="center">
| | |
|:---:|:---:|
| **Architecture** | Mixture-of-Experts (MoE) |
| **Total Parameters** | 1T |
| **Activated Parameters** | 32B |
| **Number of Layers** (Dense layer included) | 61 |
| **Number of Dense Layers** | 1 |
| **Attention Hidden Dimension** | 7168 |
| **MoE Hidden Dimension** (per Expert) | 2048 |
| **Number of Attention Heads** | 64 |
| **Number of Experts** | 384 |
| **Selected Experts per Token** | 8 |
| **Number of Shared Experts** | 1 |
| **Vocabulary Size** | 160K |
| **Context Length** | 128K |
| **Attention Mechanism** | MLA |
| **Activation Function** | SwiGLU |
</div>
## 3. Preliminary Evaluations
- GSM8k, 5-shot via lm-evaluation-harness
```
moonshotai/Kimi-K2-Instruct = 94.92
RedHatAI/Kimi-K2-Instruct-quantized.w4a16 (this model) = 94.84
```
More evals coming very soon...
## Deployment
This model can be deployed efficiently on vLLM, Red Hat Enterprise Linux AI, and Openshift AI, as shown in the example below.
Deploy on <strong>vLLM</strong>
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/Kimi-K2-Instruct-quantized.w4a16"
number_gpus = 8
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "Give me a short introduction to large language model."
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompt, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
<details>
<summary>Deploy on <strong>Red Hat AI Inference Server</strong></summary>
```bash
podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \
--ipc=host \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \
--name=vllm \
registry.access.redhat.com/rhaiis/rh-vllm-cuda \
vllm serve \
--tensor-parallel-size 8 \
--max-model-len 32768 \
--enforce-eager --model RedHatAI/Kimi-K2-Instruct-quantized.w4a16
```
</details>
<details>
<summary>Deploy on <strong>Red Hat Openshift AI</strong></summary>
```python
# Setting up vllm server with ServingRuntime
# Save as: vllm-servingruntime.yaml
apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
annotations:
openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
labels:
opendatahub.io/dashboard: 'true'
spec:
annotations:
prometheus.io/port: '8080'
prometheus.io/path: '/metrics'
multiModel: false
supportedModelFormats:
- autoSelect: true
name: vLLM
containers:
- name: kserve-container
image: quay.io/modh/vllm:rhoai-2.24-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm
command:
- python
- -m
- vllm.entrypoints.openai.api_server
args:
- "--port=8080"
- "--model=/mnt/models"
- "--served-model-name={{.Name}}"
env:
- name: HF_HOME
value: /tmp/hf_home
ports:
- containerPort: 8080
protocol: TCP
```
```python
# Attach model to vllm server. This is an NVIDIA template
# Save as: inferenceservice.yaml
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
annotations:
openshift.io/display-name: kimi-k2-instruct-quantized-w4a16 # OPTIONAL CHANGE
serving.kserve.io/deploymentMode: RawDeployment
name: kimi-k2-instruct-quantized-w4a16 # specify model name. This value will be used to invoke the model in the payload
labels:
opendatahub.io/dashboard: 'true'
spec:
predictor:
maxReplicas: 1
minReplicas: 1
model:
modelFormat:
name: vLLM
name: ''
resources:
limits:
cpu: '2' # this is model specific
memory: 8Gi # this is model specific
nvidia.com/gpu: '1' # this is accelerator specific
requests: # same comment for this block
cpu: '1'
memory: 4Gi
nvidia.com/gpu: '1'
runtime: vllm-cuda-runtime # must match the ServingRuntime name above
storageUri: oci://registry.stage.redhat.io/rhelai1/modelcar-kimi-k2-instruct-quantized-w4a16:1.5
tolerations:
- effect: NoSchedule
key: nvidia.com/gpu
operator: Exists
```
```bash
# make sure first to be in the project where you want to deploy the model
# oc project <project-name>
# apply both resources to run model
# Apply the ServingRuntime
oc apply -f vllm-servingruntime.yaml
# Apply the InferenceService
oc apply -f qwen-inferenceservice.yaml
```
```python
# Replace <inference-service-name> and <cluster-ingress-domain> below:
# - Run `oc get inferenceservice` to find your URL if unsure.
# Call the server using curl:
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions
-H "Content-Type: application/json" \
-d '{
"model": "kimi-k2-instruct-quantized-w4a16",
"stream": true,
"stream_options": {
"include_usage": true
},
"max_tokens": 1,
"messages": [
{
"role": "user",
"content": "How can a bee fly when its wings are so small?"
}
]
}'
```
See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details.
</details>
## Creation
We created this model using **MoE-Quant**, a library developed jointly with **ISTA** and tailored for the quantization of very large Mixture-of-Experts (MoE) models.
For more details, please refer to the [MoE-Quant repository](https://github.com/IST-DASLab/MoE-Quant).
---
## 5. Model Usage
### Chat Completion
Once the local inference service is up, you can interact with it through the chat endpoint:
```python
def simple_chat(client: OpenAI, model_name: str):
messages = [
{"role": "system", "content": "You are Kimi, an AI assistant created by Moonshot AI."},
{"role": "user", "content": [{"type": "text", "text": "Please give a brief self-introduction."}]},
]
response = client.chat.completions.create(
model=model_name,
messages=messages,
stream=False,
temperature=0.6,
max_tokens=256
)
print(response.choices[0].message.content)
```
> [!NOTE]
> The recommended temperature for Kimi-K2-Instruct.w4a16 is `temperature = 0.6`.
> If no special instructions are required, the system prompt above is a good default.
---
### Tool Calling
Kimi-K2-Instruct.w4a16 has strong tool-calling capabilities.
To enable them, you need to pass the list of available tools in each request, then the model will autonomously decide when and how to invoke them.
The following example demonstrates calling a weather tool end-to-end:
```python
# Your tool implementation
def get_weather(city: str) -> dict:
return {"weather": "Sunny"}
# Tool schema definition
tools = [{
"type": "function",
"function": {
"name": "get_weather",
"description": "Retrieve current weather information. Call this when the user asks about the weather.",
"parameters": {
"type": "object",
"required": ["city"],
"properties": {
"city": {
"type": "string",
"description": "Name of the city"
}
}
}
}
}]
# Map tool names to their implementations
tool_map = {
"get_weather": get_weather
}
def tool_call_with_client(client: OpenAI, model_name: str):
messages = [
{"role": "system", "content": "You are Kimi, an AI assistant created by Moonshot AI."},
{"role": "user", "content": "What's the weather like in Beijing today? Use the tool to check."}
]
finish_reason = None
while finish_reason is None or finish_reason == "tool_calls":
completion = client.chat.completions.create(
model=model_name,
messages=messages,
temperature=0.6,
tools=tools, # tool list defined above
tool_choice="auto"
)
choice = completion.choices[0]
finish_reason = choice.finish_reason
if finish_reason == "tool_calls":
messages.append(choice.message)
for tool_call in choice.message.tool_calls:
tool_call_name = tool_call.function.name
tool_call_arguments = json.loads(tool_call.function.arguments)
tool_function = tool_map[tool_call_name]
tool_result = tool_function(**tool_call_arguments)
print("tool_result:", tool_result)
messages.append({
"role": "tool",
"tool_call_id": tool_call.id,
"name": tool_call_name,
"content": json.dumps(tool_result)
})
print("-" * 100)
print(choice.message.content)
```
The `tool_call_with_client` function implements the pipeline from user query to tool execution.
This pipeline requires the inference engine to support Kimi-K2’s native tool-parsing logic.
For streaming output and manual tool-parsing, see the [Tool Calling Guide](docs/tool_call_guidance.md).
---
## 6. License
Both the code repository and the model weights are released under the [Modified MIT License](LICENSE).
---
## 7. Third Party Notices
See [THIRD PARTY NOTICES](THIRD_PARTY_NOTICES.md) |