Qwen3-235B-A22B-NVFP4
Model Overview
- Model Architecture: Qwen/Qwen3-235B-A22B- Input: Text
- Output: Text
 
- Model Optimizations:- Weight quantization: FP4
- Activation quantization: FP4
 
- Out-of-scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- Release Date: 10/29/2025
- Version: 1.0
- Model Developers: RedHatAI
This model is a quantized version of Qwen/Qwen3-235B-A22B. It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model.
Model Optimizations
This model was obtained by quantizing the weights and activations of Qwen/Qwen3-235B-A22B to FP4 data type, ready for inference with vLLM>=0.9.1 This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 25%.
Only the weights and activations of the linear operators within transformers blocks are quantized using LLM Compressor.
Deployment
Use with vLLM
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/Qwen3-235B-A22B-NVFP4"
number_gpus = 1
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
vLLM aslo supports OpenAI-compatible serving. See the documentation for more details.
Creation
This model was created by applying LLM Compressor with calibration samples from UltraChat, as presented in the code snipet below.
from datasets import load_dataset
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
from llmcompressor.modeling.prepare import replace_modules_for_calibration
MODEL_ID = "Qwen/Qwen3-235B-A22B"
 #Load model.
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID, device_map=None, torch_dtype="auto"
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
print(model)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"
NUM_CALIBRATION_SAMPLES = 256
MAX_SEQUENCE_LENGTH = 1024
# --- Replace MoE modules for calibration ---
model = replace_modules_for_calibration(model, calibrate_all_experts=False)
# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]")
ds = ds.shuffle(seed=42)
def preprocess(example):
    return {
        "text": tokenizer.apply_chat_template(
            example["messages"],
            tokenize=False,
        )
    }
ds = ds.map(preprocess)
# Tokenize inputs.
def tokenize(sample):
    return tokenizer(
        sample["text"],
        padding=False,
        max_length=MAX_SEQUENCE_LENGTH,
        truncation=True,
        add_special_tokens=False,
    )
ds = ds.map(tokenize, remove_columns=ds.column_names)
recipe = QuantizationModifier(
    targets="Linear",
    scheme="NVFP4",
    ignore=["re:.*lm_head.*", "re:.*mlp.gate$", "re:.*self_attn",
],
)
# Save to disk in compressed-tensors format.
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-NVFP4"
# Apply quantization.
oneshot(
    model=model,
    dataset=ds,
    recipe=recipe,
    max_seq_length=MAX_SEQUENCE_LENGTH,
    num_calibration_samples=NUM_CALIBRATION_SAMPLES,
    output_dir=SAVE_DIR,
    pipeline="sequential",
    sequential_targets=["Qwen3MoeDecoderLayer"],
    calibrate_moe_context=True,
)
# Save to disk in compressed-tensors format.
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)
Evaluation
This model was evaluated on the well-known OpenLLM v1, OpenLLM v2 and HumanEval_64 benchmarks using lm-evaluation-harness. The Reasoning evals were done using ligheval.
Accuracy
TBD
Reproduction
The results were obtained using the following commands:
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Qwen3-235B-A22B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
  --apply_chat_template \
  --fewshot_as_multiturn \
  --tasks openllm \
  --batch_size auto
OpenLLM v2
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Qwen3-235B-A22B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
  --apply_chat_template \
  --fewshot_as_multiturn \
  --tasks leaderboard \
  --batch_size auto
HumanEval_64
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Qwen3-235B-A22B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
  --apply_chat_template \
  --fewshot_as_multiturn \
  --tasks humaneval_64_instruct \
  --batch_size auto
LightEval
# --- model_args.yaml ---
cat > model_args.yaml <<'YAML'
model_parameters:
  model_name: "RedHatAI/Qwen3-235B-A22B-NVFP4"
  dtype: auto
  gpu_memory_utilization: 0.9
  tensor_parallel_size: 2
  max_model_length: 40960
  generation_parameters:
    seed: 42
    temperature: 0.6
    top_k: 20
    top_p: 0.95
    min_p: 0.0
    max_new_tokens: 32768
YAML
lighteval vllm model_args.yaml \
  "lighteval|aime24|0,lighteval|aime25|0,lighteval|gpqa:diamond|0" \
  --max-samples -1 \
  --output-dir out_dir
- Downloads last month
- 41
Model tree for RedHatAI/Qwen3-235B-A22B-NVFP4
Base model
Qwen/Qwen3-235B-A22B