Qwen3-32B-FP8-block
Model Overview
- Model Architecture: Qwen3ForCausalLM
- Input: Text
- Output: Text
- Model Optimizations:
- Weight quantization: FP8
- Activation quantization: FP8
- Release Date:
- Version: 1.0
- Model Developers:: Red Hat
Quantized version of Qwen/Qwen3-32B.
Model Optimizations
This model was obtained by quantizing the weights and activations of Qwen/Qwen3-32B to FP8 data type. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks of the language model are quantized.
Deployment
Use with vLLM
- Initialize vLLM server:
vllm serve nm-testing/Qwen3-32B-FP8-block --tensor_parallel_size 4
- Send requests to the server:
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
model = "nm-testing/Qwen3-32B-FP8-block"
messages = [
{"role": "user", "content": "Explain quantum mechanics clearly and concisely."},
]
outputs = client.chat.completions.create(
model=model,
messages=messages,
)
generated_text = outputs.choices[0].message.content
print(generated_text)
Creation
This model was quantized using the llm-compressor library as shown below.
Creation details
from transformers import AutoProcessor, Qwen3ForCausalLM
from llmcompressor import oneshot
from llmcompressor.modeling import replace_modules_for_calibration
from llmcompressor.modifiers.quantization import QuantizationModifier
MODEL_ID = ""nm-testing/Qwen3-32B-FP8-block""
# Load model.
model = Qwen3ForCausalLM.from_pretrained(MODEL_ID, dtype="auto")
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = replace_modules_for_calibration(model)
# Configure the quantization algorithm and scheme.
# In this case, we:
# * quantize the weights to fp8 with per-block quantization
# * quantize the activations to fp8 with dynamic token activations
recipe = QuantizationModifier(
targets="Linear",
scheme="FP8_BLOCK",
ignore=["lm_head"],
)
# Apply quantization.
oneshot(model=model, recipe=recipe)
# Save to disk in compressed-tensors format.
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-FP8-block"
model.save_pretrained(SAVE_DIR)
processor.save_pretrained(SAVE_DIR)
Evaluation
The model was evaluated on the OpenLLM leaderboard task, using lm-evaluation-harness. vLLM was used for all evaluations.
Evaluation details
Openllm V1
lm_eval \
--model vllm \
--model_args pretrained="nm-testing/Qwen3-32B-FP8-block",dtype=auto,add_bos_token=True,max_model_len=16384,tensor_parallel_size=4,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--write_out \
--batch_size auto \
--show_config
Openllm V2
lm_eval \
--model vllm \
--model_args pretrained="nm-testing/Qwen3-32B-FP8-block",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=4,gpu_memory_utilization=0.7,disable_log_stats=True,enable_chunked_prefill=True,trust_remote_code=True \
--tasks leaderboard \
--apply_chat_template \
--fewshot_as_multiturn \
--write_out \
--batch_size auto \
--show_config
Coding Benchmarks
evalplus.evaluate --model "nm-testing/Qwen3-32B-FP8-block" \
--dataset "humaneval" \
--backend vllm \
--tp 4 \
--greedy
evalplus.evaluate --model "nm-testing/Qwen3-32B-FP8-block" \
--dataset "mbpp" \
--backend vllm \
--tp 4 \
--greedy
Accuracy
| Category | Metric | Qwen/Qwen3-32B | nm-testing/Qwen3-32B-FP8-block | Recovery (%) |
|---|---|---|---|---|
| OpenLLM V1 | ARC-Challenge (Acc-Norm, 25-shot) | 72.95 | 72.78 | 99.77 |
| GSM8K (Strict-Match, 5-shot) | 74.15 | 74.53 | 100.51 | |
| HellaSwag (Acc-Norm, 10-shot) | 84.03 | 83.86 | 99.80 | |
| MMLU (Acc, 5-shot) | 81.99 | 81.97 | 99.97 | |
| TruthfulQA (MC2, 0-shot) | 59.18 | 58.72 | 99.22 | |
| Winogrande (Acc, 5-shot) | 76.01 | 75.22 | 98.96 | |
| Average Score | 74.72 | 74.51 | 99.72 | |
| OpenLLM V2 | IFEval (Inst Level Strict Acc, 0-shot) | 49.04 | 49.28 | 100.49 |
| BBH (Acc-Norm, 3-shot) | 35.27 | 33.94 | 96.21 | |
| Math-Hard (Exact-Match, 4-shot) | 19.94 | 17.52 | 87.88 | |
| GPQA (Acc-Norm, 0-shot) | 26.01 | 24.41 | 93.87 | |
| MUSR (Acc-Norm, 0-shot) | 40.34 | 40.21 | 99.67 | |
| MMLU-Pro (Acc, 5-shot) | 12.38 | 12.35 | 99.73 | |
| Average Score | 30.50 | 29.62 | 97.11 | |
| Coding | HumanEval pass@1 | 90.20 | 90.20 | 100.00 |
| HumanEval+ pass@1 | 84.80 | 84.10 | 98.35 | |
| MBPP pass@1 | 86.50 | 86.20 | 99.65 | |
| MBPP+ pass@1 | 73.00 | 71.40 | 97.80 |
- Downloads last month
- 16
Model tree for RedHatAI/Qwen3-32B-FP8-block
Base model
Qwen/Qwen3-32B