RichardErkhov's picture
uploaded readme
d059ca2 verified
|
raw
history blame
10.9 kB
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
THaLLE-0.1-7B-fa - GGUF
- Model creator: https://huggingface.co/KBTG-Labs/
- Original model: https://huggingface.co/KBTG-Labs/THaLLE-0.1-7B-fa/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [THaLLE-0.1-7B-fa.Q2_K.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.Q2_K.gguf) | Q2_K | 2.81GB |
| [THaLLE-0.1-7B-fa.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.IQ3_XS.gguf) | IQ3_XS | 3.12GB |
| [THaLLE-0.1-7B-fa.IQ3_S.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.IQ3_S.gguf) | IQ3_S | 3.26GB |
| [THaLLE-0.1-7B-fa.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.Q3_K_S.gguf) | Q3_K_S | 3.25GB |
| [THaLLE-0.1-7B-fa.IQ3_M.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.IQ3_M.gguf) | IQ3_M | 3.33GB |
| [THaLLE-0.1-7B-fa.Q3_K.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.Q3_K.gguf) | Q3_K | 3.55GB |
| [THaLLE-0.1-7B-fa.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.Q3_K_M.gguf) | Q3_K_M | 3.55GB |
| [THaLLE-0.1-7B-fa.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.Q3_K_L.gguf) | Q3_K_L | 3.81GB |
| [THaLLE-0.1-7B-fa.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.IQ4_XS.gguf) | IQ4_XS | 3.96GB |
| [THaLLE-0.1-7B-fa.Q4_0.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.Q4_0.gguf) | Q4_0 | 4.13GB |
| [THaLLE-0.1-7B-fa.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.IQ4_NL.gguf) | IQ4_NL | 4.16GB |
| [THaLLE-0.1-7B-fa.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.Q4_K_S.gguf) | Q4_K_S | 4.15GB |
| [THaLLE-0.1-7B-fa.Q4_K.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.Q4_K.gguf) | Q4_K | 4.36GB |
| [THaLLE-0.1-7B-fa.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.Q4_K_M.gguf) | Q4_K_M | 4.36GB |
| [THaLLE-0.1-7B-fa.Q4_1.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.Q4_1.gguf) | Q4_1 | 4.54GB |
| [THaLLE-0.1-7B-fa.Q5_0.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.Q5_0.gguf) | Q5_0 | 4.95GB |
| [THaLLE-0.1-7B-fa.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.Q5_K_S.gguf) | Q5_K_S | 4.95GB |
| [THaLLE-0.1-7B-fa.Q5_K.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.Q5_K.gguf) | Q5_K | 5.07GB |
| [THaLLE-0.1-7B-fa.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.Q5_K_M.gguf) | Q5_K_M | 5.07GB |
| [THaLLE-0.1-7B-fa.Q5_1.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.Q5_1.gguf) | Q5_1 | 5.36GB |
| [THaLLE-0.1-7B-fa.Q6_K.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.Q6_K.gguf) | Q6_K | 5.82GB |
| [THaLLE-0.1-7B-fa.Q8_0.gguf](https://huggingface.co/RichardErkhov/KBTG-Labs_-_THaLLE-0.1-7B-fa-gguf/blob/main/THaLLE-0.1-7B-fa.Q8_0.gguf) | Q8_0 | 7.54GB |
Original model description:
---
license: apache-2.0
pipeline_tag: text-generation
language:
- en
tags:
- finance
---
# THaLLE: Text Hyperlocally Augmented Large Language Extension
**❗NOTICE❗**: `KBTG-Labs/THaLLE-0.1-7B-fa` is a WIP model checkpoint distributed for reproducing results in our [Technical Report](https://arxiv.org/abs/2406.07505).
## Training details
This model is a [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) fine-tuned on our Internal CFA Mock Exam 2009-2019 containing 9,426 Questions using LoRA.
### Vocab Config Patching
Prior to training, we patched Qwen/Qwen2-7B-Instruct's `tokenizer_config.json` `bos_token` field from `null` to the start token `"<|im_start|>"`.
```json
{
...
"bos_token": "<|im_start|>"
...
}
```
## Results
For more details see our [Technical Report](https://arxiv.org/abs/2406.07505).
| Model | Internal 2020 | Internal 2024 | Flare CFA* |
| --------------------------------------- | ------------- | ------------- | ---------- |
| APIs | | | |
| `gpt-3.5-turbo-0125` | 0.5458 | 0.5027 | 0.6366 |
| `gemini-1.5-flash-001` | 0.6271 | 0.6278 | 0.7355 |
| `gemini-1.5-pro-001` | 0.6780 | 0.6444 | 0.7829 |
| `gpt-4o-2024-05-13` | **0.8000** | **0.8055** | **0.8789** |
| HF models | | | |
| `"meta-llama/Llama-2-7b-chat-hf"` | 0.3774 | 0.3639 | 0.4264 |
| `"google/gemma-7b-it"` | 0.5107 | 0.5333 | 0.6027 |
| `"meta-llama/Meta-Llama-3-8B-Instruct"` | 0.5424 | 0.5222 | 0.6386 |
| `"Qwen/Qwen2-7B-Instruct"` | 0.5740 | 0.5583 | 0.6831 |
| `"KBTG-Labs/THaLLE-0.1-7B-fa"` | **0.6678** | **0.6500** | **0.7171** |
[*] Flare CFA is `"ChanceFocus/flare-cfa"`
## Usage
### Requirements
Since `KBTG-Labs/THaLLE-0.1-7B-fa` is a fine-tuned of Qwen2-7B-Instruct you will need to install `transformers>=4.37.0`.
### Reproducing results
Running the script below should give you this output:
```
Progress: 1032/1032 | Correct: 740 (71.71%)
```
```python
import re
from typing import Literal, Optional
import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
MODEL_ID: str = "KBTG-Labs/THaLLE-0.1-7B-fa"
SYSTEM_PROMPT: str = """You are a CFA (chartered financial analyst) taking a test to evaluate your knowledge of finance. You will be given a question along with three possible answers (A, B, and C).
Indicate the correct answer (A, B, or C)."""
QUESTION_TEMPLATE: str = """Question:
{question}
A. {choice_a}
B. {choice_b}
C. {choice_c}"""
def format_flare_cfa(text: str) -> dict[str, str]:
text = re.sub(r"\s+", " ", text)
pattern = r"Q:\s*(.*?),\s*CHOICES:\s*A:\s*(.*?),\s*B:\s*(.*?),\s*C:\s*(.*)"
match = re.search(pattern, text)
if match:
question, choice_a, choice_b, choice_c = match.groups()
return {
"question": question.strip(),
"choice_a": choice_a.strip(),
"choice_b": choice_b.strip(),
"choice_c": choice_c.strip(),
}
else:
raise ValueError("Input text does not match the expected format.")
def load_benchmark_dataset() -> list[dict[str, str]]:
dataset = load_dataset("ChanceFocus/flare-cfa")["test"]
prepared_dataset = []
for d in dataset:
entry = format_flare_cfa(d["text"])
entry["answer"] = str(d["answer"]).upper()
prepared_dataset.append(entry)
return prepared_dataset
def extract_choice(
response_text: str, choice_a: str, choice_b: str, choice_c: str
) -> Optional[Literal["A", "B", "C"]]:
def clean(text: str) -> str:
return text.replace("–", "-").strip().replace("\n", "")
find_choice = re.findall(
r"([T|t]he correct answer is[.|:]? [ABC]|[A|a]nswer[.|:]?[is]?\W+?\n?[ABC]\s)",
response_text,
)
if find_choice:
return clean(find_choice[0])[-1]
if len(response_text) == 1 and response_text in "ABC":
return response_text
find_choice = re.findall(r"[ABC][.]\s?", response_text)
if find_choice:
return find_choice[0][0]
choice = {"A": choice_a, "B": choice_b, "C": choice_c}
for ch, content in choice.items():
if clean(content) in clean(response_text):
return ch
return None
def inference(messages: list[dict[str, str]], model, tokenizer) -> str:
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=768,
do_sample=False,
temperature=None,
top_p=None,
top_k=None,
)
generated_ids = [
output_ids[len(input_ids) :]
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
def run_benchmark(dataset: list[dict[str, str]], model, tokenizer):
total_correct = 0
for i, problem in enumerate(dataset, start=1):
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": QUESTION_TEMPLATE.format(**problem)},
]
output_text = inference(messages, model, tokenizer)
prediction = extract_choice(
output_text,
problem["choice_a"],
problem["choice_b"],
problem["choice_c"],
)
correct = problem["answer"] == prediction
total_correct += correct
percent = total_correct / i * 100
print(
f"Progress: {i}/{len(dataset)} | Correct: {total_correct} ({percent:.2f}%)",
end="\r",
)
if __name__ == "__main__":
dataset = load_benchmark_dataset()
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16,
device_map="auto",
)
run_benchmark(dataset, model, tokenizer)
```
## Citation
If you find our work useful, please cite:
```
@misc{labs2024thalle,
title={THaLLE: Text Hyperlocally Augmented Large Language Extension -- Technical Report},
author={KBTG Labs and Danupat Khamnuansin and Atthakorn Petchsod and Anuruth Lertpiya and Pornchanan Balee and Thanawat Lodkaew and Tawunrat Chalothorn and Thadpong Pongthawornkamol and Monchai Lertsutthiwong},
year={2024},
eprint={2406.07505},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```