Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: JackFram/llama-160m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 805f058c8bba5205_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/805f058c8bba5205_train_data.json
  type:
    field_input: Title
    field_instruction: meshMajor
    field_output: abstractText
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/eccd3ba8-04ba-4ed0-a969-37f1272694ce
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 3060
micro_batch_size: 4
mlflow_experiment_name: /tmp/805f058c8bba5205_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
special_tokens:
  pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
use_rslora: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: 1e98fb5c-7909-450b-aaa0-df4dfe79858d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1e98fb5c-7909-450b-aaa0-df4dfe79858d
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

eccd3ba8-04ba-4ed0-a969-37f1272694ce

This model is a fine-tuned version of JackFram/llama-160m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1968

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 2988

Training results

Training Loss Epoch Step Validation Loss
2.4853 0.0007 1 2.4221
2.2173 0.0669 100 2.2804
2.1409 0.1339 200 2.2656
2.2481 0.2008 300 2.2580
2.2776 0.2677 400 2.2506
2.2549 0.3347 500 2.2453
2.1056 0.4016 600 2.2413
2.3304 0.4685 700 2.2368
2.2064 0.5355 800 2.2321
2.1778 0.6024 900 2.2298
2.1069 0.6693 1000 2.2251
2.1674 0.7363 1100 2.2210
2.2225 0.8032 1200 2.2184
2.1332 0.8701 1300 2.2165
2.2397 0.9371 1400 2.2129
2.1167 1.0040 1500 2.2104
2.1367 1.0710 1600 2.2096
2.1625 1.1379 1700 2.2077
2.3569 1.2048 1800 2.2061
2.0947 1.2718 1900 2.2044
2.0811 1.3387 2000 2.2027
2.1792 1.4056 2100 2.2018
2.1443 1.4726 2200 2.2001
2.0647 1.5395 2300 2.1993
2.1534 1.6064 2400 2.1983
2.1485 1.6734 2500 2.1978
2.1135 1.7403 2600 2.1973
2.1658 1.8072 2700 2.1971
2.1297 1.8742 2800 2.1967
2.0333 1.9411 2900 2.1968

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Romain-XV/eccd3ba8-04ba-4ed0-a969-37f1272694ce

Adapter
(205)
this model

Evaluation results