See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: JackFram/llama-160m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 805f058c8bba5205_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/805f058c8bba5205_train_data.json
type:
field_input: Title
field_instruction: meshMajor
field_output: abstractText
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/eccd3ba8-04ba-4ed0-a969-37f1272694ce
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 3060
micro_batch_size: 4
mlflow_experiment_name: /tmp/805f058c8bba5205_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
use_rslora: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: 1e98fb5c-7909-450b-aaa0-df4dfe79858d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1e98fb5c-7909-450b-aaa0-df4dfe79858d
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
eccd3ba8-04ba-4ed0-a969-37f1272694ce
This model is a fine-tuned version of JackFram/llama-160m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.1968
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2988
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 2.4853 | 0.0007 | 1 | 2.4221 |
| 2.2173 | 0.0669 | 100 | 2.2804 |
| 2.1409 | 0.1339 | 200 | 2.2656 |
| 2.2481 | 0.2008 | 300 | 2.2580 |
| 2.2776 | 0.2677 | 400 | 2.2506 |
| 2.2549 | 0.3347 | 500 | 2.2453 |
| 2.1056 | 0.4016 | 600 | 2.2413 |
| 2.3304 | 0.4685 | 700 | 2.2368 |
| 2.2064 | 0.5355 | 800 | 2.2321 |
| 2.1778 | 0.6024 | 900 | 2.2298 |
| 2.1069 | 0.6693 | 1000 | 2.2251 |
| 2.1674 | 0.7363 | 1100 | 2.2210 |
| 2.2225 | 0.8032 | 1200 | 2.2184 |
| 2.1332 | 0.8701 | 1300 | 2.2165 |
| 2.2397 | 0.9371 | 1400 | 2.2129 |
| 2.1167 | 1.0040 | 1500 | 2.2104 |
| 2.1367 | 1.0710 | 1600 | 2.2096 |
| 2.1625 | 1.1379 | 1700 | 2.2077 |
| 2.3569 | 1.2048 | 1800 | 2.2061 |
| 2.0947 | 1.2718 | 1900 | 2.2044 |
| 2.0811 | 1.3387 | 2000 | 2.2027 |
| 2.1792 | 1.4056 | 2100 | 2.2018 |
| 2.1443 | 1.4726 | 2200 | 2.2001 |
| 2.0647 | 1.5395 | 2300 | 2.1993 |
| 2.1534 | 1.6064 | 2400 | 2.1983 |
| 2.1485 | 1.6734 | 2500 | 2.1978 |
| 2.1135 | 1.7403 | 2600 | 2.1973 |
| 2.1658 | 1.8072 | 2700 | 2.1971 |
| 2.1297 | 1.8742 | 2800 | 2.1967 |
| 2.0333 | 1.9411 | 2900 | 2.1968 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Romain-XV/eccd3ba8-04ba-4ed0-a969-37f1272694ce
Base model
JackFram/llama-160m