PhoBert_Lexical_Dataset45K

This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4753
  • Accuracy: 0.8913
  • F1: 0.8822

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.2841 200 0.3590 0.8315 0.8226
No log 0.5682 400 0.2883 0.8752 0.8666
No log 0.8523 600 0.2859 0.8760 0.8676
0.3584 1.1364 800 0.2665 0.8822 0.8733
0.3584 1.4205 1000 0.2749 0.8817 0.8661
0.3584 1.7045 1200 0.2749 0.8788 0.8721
0.3584 1.9886 1400 0.2721 0.8915 0.8796
0.2564 2.2727 1600 0.2601 0.8897 0.8823
0.2564 2.5568 1800 0.2470 0.8930 0.8829
0.2564 2.8409 2000 0.2494 0.8958 0.8862
0.2235 3.125 2200 0.2616 0.8944 0.8848
0.2235 3.4091 2400 0.2578 0.8887 0.8816
0.2235 3.6932 2600 0.2665 0.8905 0.8816
0.2235 3.9773 2800 0.2510 0.8934 0.8850
0.1979 4.2614 3000 0.2717 0.8906 0.8827
0.1979 4.5455 3200 0.2817 0.8849 0.8784
0.1979 4.8295 3400 0.2865 0.8835 0.8770
0.1693 5.1136 3600 0.2833 0.8921 0.8840
0.1693 5.3977 3800 0.2817 0.8950 0.8856
0.1693 5.6818 4000 0.3206 0.8837 0.8772
0.1693 5.9659 4200 0.3095 0.8921 0.8805
0.1468 6.25 4400 0.3032 0.8925 0.8819
0.1468 6.5341 4600 0.3090 0.8896 0.8805
0.1468 6.8182 4800 0.3135 0.8948 0.8854
0.128 7.1023 5000 0.3523 0.8838 0.8770
0.128 7.3864 5200 0.3495 0.8956 0.8850
0.128 7.6705 5400 0.3480 0.8956 0.8859
0.128 7.9545 5600 0.3398 0.8909 0.8829
0.1086 8.2386 5800 0.3459 0.8930 0.8844
0.1086 8.5227 6000 0.3390 0.8954 0.8864
0.1086 8.8068 6200 0.3383 0.8952 0.8861
0.0943 9.0909 6400 0.3674 0.8928 0.8825
0.0943 9.375 6600 0.3632 0.8954 0.8860
0.0943 9.6591 6800 0.3776 0.8889 0.8794
0.0943 9.9432 7000 0.3761 0.8935 0.8846
0.0838 10.2273 7200 0.3892 0.8930 0.8837
0.0838 10.5114 7400 0.4170 0.8882 0.8800
0.0838 10.7955 7600 0.4109 0.8920 0.8823
0.0718 11.0795 7800 0.4371 0.8902 0.8808
0.0718 11.3636 8000 0.4116 0.8906 0.8820
0.0718 11.6477 8200 0.4400 0.8880 0.8802
0.0718 11.9318 8400 0.4392 0.8889 0.8809
0.0621 12.2159 8600 0.4430 0.8919 0.8825
0.0621 12.5 8800 0.4558 0.8904 0.8819
0.0621 12.7841 9000 0.4548 0.8930 0.8840
0.0572 13.0682 9200 0.4681 0.8904 0.8816
0.0572 13.3523 9400 0.4781 0.8891 0.8799
0.0572 13.6364 9600 0.4710 0.8900 0.8816
0.0572 13.9205 9800 0.4691 0.8887 0.8800
0.0514 14.2045 10000 0.4772 0.8912 0.8823
0.0514 14.4886 10200 0.4740 0.8893 0.8806
0.0514 14.7727 10400 0.4753 0.8913 0.8822

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
-
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for RonTon05/PhoBert_Lexical_Dataset45K

Finetuned
(291)
this model