SentenceTransformer based on Shuu12121/CodeModernBERT-Owl-4.1
This is a sentence-transformers model finetuned from Shuu12121/CodeModernBERT-Owl-4.1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Shuu12121/CodeModernBERT-Owl-4.1
- Maximum Sequence Length: 1024 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Register the router instance.\n\n@return void',
"protected function registerRouter()\n\t{\n\t\t$this->app['router'] = $this->app->share(function($app)\n\t\t{\n\t\t\treturn new Router($app['events'], $app);\n\t\t});\n\t}",
'func (d *Driver) DiffSize(id string, idMappings *idtools.IDMappings, parent string, parentMappings *idtools.IDMappings, mountLabel string) (size int64, err error) {\n\tif d.useNaiveDiff() || !d.isParent(id, parent) {\n\t\treturn d.naiveDiff.DiffSize(id, idMappings, parent, parentMappings, mountLabel)\n\t}\n\treturn directory.Size(d.getDiffPath(id))\n}',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,960,000 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 50.31 tokens
- max: 1024 tokens
- min: 28 tokens
- mean: 164.73 tokens
- max: 1024 tokens
- min: 1.0
- mean: 1.0
- max: 1.0
- Samples:
sentence_0 sentence_1 label // GetNodeID returns the NodeID field if it's non-nil, zero value otherwise.func (a *App) GetNodeID() string {
if a == nil// SignVote signs a canonical representation of the vote, along with the
// chainID. Implements PrivValidator.func (pv *FilePV) SignVote(chainID string, vote *types.Vote) error {
if err := pv.signVote(chainID, vote); err != nil {
return fmt.Errorf("error signing vote: %v", err)
}
return nil
}1.0//GetQyAccessToken ่ทๅaccess_tokenfunc (ctx *Context) GetQyAccessToken() (accessToken string, err error) {
ctx.accessTokenLock.Lock()
defer ctx.accessTokenLock.Unlock()
accessTokenCacheKey := fmt.Sprintf("qy_access_token_%s", ctx.AppID)
val := ctx.Cache.Get(accessTokenCacheKey)
if val != nil {
accessToken = val.(string)
return
}
//ไปๅพฎไฟกๆๅกๅจ่ทๅ
var resQyAccessToken ResQyAccessToken
resQyAccessToken, err = ctx.GetQyAccessTokenFromServer()
if err != nil {
return
}
accessToken = resQyAccessToken.AccessToken
return
}1.0 - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 250per_device_eval_batch_size: 250fp16: Truemulti_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 250per_device_eval_batch_size: 250per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
Click to expand
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0180 | 500 | 0.9746 |
| 0.0359 | 1000 | 0.1636 |
| 0.0539 | 1500 | 0.1502 |
| 0.0718 | 2000 | 0.1374 |
| 0.0898 | 2500 | 0.1314 |
| 0.1078 | 3000 | 0.1241 |
| 0.1257 | 3500 | 0.1152 |
| 0.1437 | 4000 | 0.1146 |
| 0.1616 | 4500 | 0.1065 |
| 0.1796 | 5000 | 0.1014 |
| 0.1976 | 5500 | 0.0983 |
| 0.2155 | 6000 | 0.0987 |
| 0.2335 | 6500 | 0.0917 |
| 0.2514 | 7000 | 0.0912 |
| 0.2694 | 7500 | 0.0896 |
| 0.2874 | 8000 | 0.086 |
| 0.3053 | 8500 | 0.0811 |
| 0.3233 | 9000 | 0.0813 |
| 0.3412 | 9500 | 0.082 |
| 0.3592 | 10000 | 0.0759 |
| 0.3772 | 10500 | 0.0753 |
| 0.3951 | 11000 | 0.0722 |
| 0.4131 | 11500 | 0.0707 |
| 0.4310 | 12000 | 0.0699 |
| 0.4490 | 12500 | 0.0698 |
| 0.4670 | 13000 | 0.0679 |
| 0.4849 | 13500 | 0.0653 |
| 0.5029 | 14000 | 0.0641 |
| 0.5208 | 14500 | 0.063 |
| 0.5388 | 15000 | 0.0621 |
| 0.5568 | 15500 | 0.061 |
| 0.5747 | 16000 | 0.0581 |
| 0.5927 | 16500 | 0.0555 |
| 0.6106 | 17000 | 0.0552 |
| 0.6286 | 17500 | 0.0551 |
| 0.6466 | 18000 | 0.0533 |
| 0.6645 | 18500 | 0.0521 |
| 0.6825 | 19000 | 0.051 |
| 0.7004 | 19500 | 0.0509 |
| 0.7184 | 20000 | 0.0499 |
| 0.7364 | 20500 | 0.0468 |
| 0.7543 | 21000 | 0.0484 |
| 0.7723 | 21500 | 0.0466 |
| 0.7902 | 22000 | 0.0446 |
| 0.8082 | 22500 | 0.0453 |
| 0.8261 | 23000 | 0.0442 |
| 0.8441 | 23500 | 0.0424 |
| 0.8621 | 24000 | 0.0434 |
| 0.8800 | 24500 | 0.0416 |
| 0.8980 | 25000 | 0.0406 |
| 0.9159 | 25500 | 0.0404 |
| 0.9339 | 26000 | 0.0398 |
| 0.9519 | 26500 | 0.0406 |
| 0.9698 | 27000 | 0.0387 |
| 0.9878 | 27500 | 0.0386 |
| 1.0057 | 28000 | 0.0311 |
| 1.0237 | 28500 | 0.0193 |
| 1.0417 | 29000 | 0.0197 |
| 1.0596 | 29500 | 0.0186 |
| 1.0776 | 30000 | 0.0192 |
| 1.0955 | 30500 | 0.0194 |
| 1.1135 | 31000 | 0.0196 |
| 1.1315 | 31500 | 0.0198 |
| 1.1494 | 32000 | 0.0203 |
| 1.1674 | 32500 | 0.02 |
| 1.1853 | 33000 | 0.0184 |
| 1.2033 | 33500 | 0.0181 |
| 1.2213 | 34000 | 0.0195 |
| 1.2392 | 34500 | 0.0186 |
| 1.2572 | 35000 | 0.0184 |
| 1.2751 | 35500 | 0.0184 |
| 1.2931 | 36000 | 0.0194 |
| 1.3111 | 36500 | 0.0191 |
| 1.3290 | 37000 | 0.0183 |
| 1.3470 | 37500 | 0.0179 |
| 1.3649 | 38000 | 0.0179 |
| 1.3829 | 38500 | 0.0178 |
| 1.4009 | 39000 | 0.018 |
| 1.4188 | 39500 | 0.0182 |
| 1.4368 | 40000 | 0.0188 |
| 1.4547 | 40500 | 0.0172 |
| 1.4727 | 41000 | 0.0169 |
| 1.4907 | 41500 | 0.0173 |
| 1.5086 | 42000 | 0.0166 |
| 1.5266 | 42500 | 0.0157 |
| 1.5445 | 43000 | 0.0168 |
| 1.5625 | 43500 | 0.0158 |
| 1.5805 | 44000 | 0.016 |
| 1.5984 | 44500 | 0.0166 |
| 1.6164 | 45000 | 0.0168 |
| 1.6343 | 45500 | 0.0162 |
| 1.6523 | 46000 | 0.0153 |
| 1.6703 | 46500 | 0.0149 |
| 1.6882 | 47000 | 0.0158 |
| 1.7062 | 47500 | 0.0152 |
| 1.7241 | 48000 | 0.0147 |
| 1.7421 | 48500 | 0.0146 |
| 1.7601 | 49000 | 0.0145 |
| 1.7780 | 49500 | 0.0148 |
| 1.7960 | 50000 | 0.015 |
| 1.8139 | 50500 | 0.0145 |
| 1.8319 | 51000 | 0.0142 |
| 1.8499 | 51500 | 0.014 |
| 1.8678 | 52000 | 0.0139 |
| 1.8858 | 52500 | 0.0133 |
| 1.9037 | 53000 | 0.0135 |
| 1.9217 | 53500 | 0.0131 |
| 1.9397 | 54000 | 0.0134 |
| 1.9576 | 54500 | 0.013 |
| 1.9756 | 55000 | 0.0132 |
| 1.9935 | 55500 | 0.0122 |
| 2.0115 | 56000 | 0.0089 |
| 2.0295 | 56500 | 0.0061 |
| 2.0474 | 57000 | 0.0061 |
| 2.0654 | 57500 | 0.006 |
| 2.0833 | 58000 | 0.0062 |
| 2.1013 | 58500 | 0.0058 |
| 2.1193 | 59000 | 0.0059 |
| 2.1372 | 59500 | 0.0059 |
| 2.1552 | 60000 | 0.0059 |
| 2.1731 | 60500 | 0.0058 |
| 2.1911 | 61000 | 0.0059 |
| 2.2091 | 61500 | 0.0058 |
| 2.2270 | 62000 | 0.0059 |
| 2.2450 | 62500 | 0.0058 |
| 2.2629 | 63000 | 0.0057 |
| 2.2809 | 63500 | 0.0055 |
| 2.2989 | 64000 | 0.0056 |
| 2.3168 | 64500 | 0.0056 |
| 2.3348 | 65000 | 0.0056 |
| 2.3527 | 65500 | 0.0057 |
| 2.3707 | 66000 | 0.0055 |
| 2.3886 | 66500 | 0.0056 |
| 2.4066 | 67000 | 0.0054 |
| 2.4246 | 67500 | 0.0055 |
| 2.4425 | 68000 | 0.0052 |
| 2.4605 | 68500 | 0.0053 |
| 2.4784 | 69000 | 0.0052 |
| 2.4964 | 69500 | 0.0053 |
| 2.5144 | 70000 | 0.0052 |
| 2.5323 | 70500 | 0.0052 |
| 2.5503 | 71000 | 0.0051 |
| 2.5682 | 71500 | 0.0049 |
| 2.5862 | 72000 | 0.005 |
| 2.6042 | 72500 | 0.0047 |
| 2.6221 | 73000 | 0.0048 |
| 2.6401 | 73500 | 0.0047 |
| 2.6580 | 74000 | 0.0048 |
| 2.6760 | 74500 | 0.0048 |
| 2.6940 | 75000 | 0.0048 |
| 2.7119 | 75500 | 0.0047 |
| 2.7299 | 76000 | 0.0047 |
| 2.7478 | 76500 | 0.0046 |
| 2.7658 | 77000 | 0.0046 |
| 2.7838 | 77500 | 0.0044 |
| 2.8017 | 78000 | 0.0046 |
| 2.8197 | 78500 | 0.0047 |
| 2.8376 | 79000 | 0.0045 |
| 2.8556 | 79500 | 0.0043 |
| 2.8736 | 80000 | 0.0045 |
| 2.8915 | 80500 | 0.0044 |
| 2.9095 | 81000 | 0.0045 |
| 2.9274 | 81500 | 0.0045 |
| 2.9454 | 82000 | 0.0043 |
| 2.9634 | 82500 | 0.0042 |
| 2.9813 | 83000 | 0.0041 |
| 2.9993 | 83500 | 0.0044 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.53.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Model tree for Shuu12121/CodeSearch-ModernBERT-Owl-4.1-Plus
Base model
Shuu12121/CodeModernBERT-Owl-4.1