File size: 13,702 Bytes
9b8f636
6d0ed86
9b8f636
6d0ed86
 
 
9b8f636
 
 
 
 
6d0ed86
 
9b8f636
 
816d522
 
 
 
6d0ed86
816d522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b8f636
 
 
 
 
 
816d522
 
9b8f636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
816d522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b8f636
 
 
 
816d522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b8f636
816d522
 
 
 
9b8f636
 
 
 
816d522
 
 
 
 
 
9b8f636
 
 
 
816d522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b8f636
 
 
816d522
9b8f636
 
 
816d522
9b8f636
816d522
9b8f636
 
 
816d522
9b8f636
 
 
816d522
 
9b8f636
816d522
9b8f636
 
816d522
 
9b8f636
816d522
 
 
6d0ed86
816d522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d0ed86
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
---
language:
- en
license: mit
license_name: flux-1-dev
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
tags:
- image-restoration
- diffusion
- computer-vision
- flux
pipeline_tag: image-to-image
library_name: diffusers
---

<div align="center">
<h1>🎨 LucidFlux:<br/>Caption-Free Universal Image Restoration with a Large-Scale Diffusion Transformer</h1>

### 
[**🌍 Website**](https://w2genai-lab.github.io/LucidFlux/) | [**πŸ“„ Paper**](https://huggingface.co/papers/2509.22414) | [**πŸ’» Code**](https://github.com/W2GenAI-Lab/LucidFlux) | [**🧩 Models**](https://huggingface.co/W2GenAI/LucidFlux) 
</div>

---
<img width="1420" height="1116" alt="abs_image" src="https://github.com/user-attachments/assets/791c0c60-29a6-4497-86a9-5716049afe9a" />

---
## News & Updates

---

Let us know if this works!

## πŸ‘₯ Authors

> [**Song Fei**](https://github.com/FeiSong123)<sup>1</sup>\*, [**Tian Ye**](https://owen718.github.io/)<sup>1</sup>\*‑, [**Lei Zhu**](https://sites.google.com/site/indexlzhu/home)<sup>1,2</sup>†
>
> <sup>1</sup>The Hong Kong University of Science and Technology (Guangzhou)  
> <sup>2</sup>The Hong Kong University of Science and Technology  
>
> \*Equal Contribution, ‑Project Leader, †Corresponding Author

---

## 🌟 What is LucidFlux?

<!-- <div align="center">
<img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/demo/demo2.png" alt="What is LucidFlux - Quick Prompt Demo" width="1200"/>
<br>
</div> -->

LucidFlux is a framework designed to perform high-fidelity image restoration across a wide range of degradations without requiring textual captions. By combining a Flux-based DiT backbone with Light-weight Condition Module and SigLIP semantic alignment, LucidFlux enables caption-free guidance while preserving structural and semantic consistency, achieving superior restoration quality.

<!-- ## πŸš€ Quick Start

### πŸ”§ Installation

```bash
# Clone the repository
git clone https://github.com/ephemeral182/LucidFlux.git
cd LucidFlux

# Create conda environment
conda create -n postercraft python=3.11
conda activate postercraft

# Install dependencies
pip install -r requirements.txt

``` -->

<!-- ### πŸš€ Quick Generation

Generate high-quality aesthetic posters from your prompt with `BF16` precision:

```bash
python inference.py \
  --prompt "Urban Canvas Street Art Expo poster with bold graffiti-style lettering and dynamic colorful splashes" \
  --enable_recap \
  --num_inference_steps 28 \
  --guidance_scale 3.5 \
  --seed 42 \
  --pipeline_path "black-forest-labs/FLUX.1-dev" \
  --custom_transformer_path "LucidFlux/LucidFlux-v1_RL" \
  --qwen_model_path "Qwen/Qwen3-8B"
```

If you are running on a GPU with limited memory, you can use `inference_offload.py` to offload some components to the CPU:

```bash
python inference_offload.py \
  --prompt "Urban Canvas Street Art Expo poster with bold graffiti-style lettering and dynamic colorful splashes" \
  --enable_recap \
  --num_inference_steps 28 \
  --guidance_scale 3.5 \
  --seed 42 \
  --pipeline_path "black-forest-labs/FLUX.1-dev" \
  --custom_transformer_path "LucidFlux/LucidFlux-v1_RL" \
  --qwen_model_path "Qwen/Qwen3-8B"
``` -->
<!-- 
### πŸ’» Gradio Web UI

We provide a Gradio web UI for LucidFlux. 

```bash
python demo_gradio.py
``` -->


## πŸ“Š Performance Benchmarks

<div align="center">

### πŸ“ˆ Quantitative Results

<table>
<thead>
  <tr>
    <th>Benchmark</th>
    <th>Metric</th>
    <th>ResShift</th>
    <th>StableSR</th>
    <th>SinSR</th>
    <th>SeeSR</th>
    <th>DreamClear</th>
    <th>SUPIR</th>
    <th>LucidFlux<br/>(Ours)</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td rowspan="7" style="text-align:center; vertical-align:middle;">RealSR</td>
    <td style="white-space: nowrap;">CLIP-IQA+ ↑</td>
    <td>0.5005</td>
    <td>0.4408</td>
    <td>0.5416</td>
    <td>0.6731</td>
    <td>0.5331</td>
    <td>0.5640</td>
    <td><b>0.7074</b></td>
  </tr>
  <tr>
    <td style="white-space: nowrap;">Q-Align ↑</td>
    <td>3.1045</td>
    <td>2.5087</td>
    <td>3.3615</td>
    <td>3.6073</td>
    <td>3.0044</td>
    <td>3.4682</td>
    <td><b>3.7555</b></td>
  </tr>
  <tr>
    <td style="white-space: nowrap;">MUSIQ ↑</td>
    <td>49.50</td>
    <td>39.98</td>
    <td>57.95</td>
    <td>67.57</td>
    <td>49.48</td>
    <td>55.68</td>
    <td><b>70.20</b></td>
  </tr>
  <tr>
    <td style="white-space: nowrap;">MANIQA ↑</td>
    <td>0.2976</td>
    <td>0.2356</td>
    <td>0.3753</td>
    <td>0.5087</td>
    <td>0.3092</td>
    <td>0.3426</td>
    <td><b>0.5437</b></td>
  </tr>
  <tr>
    <td style="white-space: nowrap;">NIMA ↑</td>
    <td>4.7026</td>
    <td>4.3639</td>
    <td>4.8282</td>
    <td>4.8957</td>
    <td>4.4948</td>
    <td>4.6401</td>
    <td><b>5.1072</b></td>
  </tr>
  <tr>
    <td style="white-space: nowrap;">CLIP-IQA ↑</td>
    <td>0.5283</td>
    <td>0.3521</td>
    <td>0.6601</td>
    <td><b>0.6993</b></td>
    <td>0.5390</td>
    <td>0.4857</td>
    <td>0.6783</td>
  </tr>
  <tr>
    <td style="white-space: nowrap;">NIQE ↓</td>
    <td>9.0674</td>
    <td>6.8733</td>
    <td>6.4682</td>
    <td>5.4594</td>
    <td>5.2873</td>
    <td>5.2819</td>
    <td><b>4.2893</b></td>
  </tr>
  <tr>
    <td rowspan="7" style="text-align:center; vertical-align:middle;">RealLQ250</td>
    <td style="white-space: nowrap;">CLIP-IQA+ ↑</td>
    <td>0.5529</td>
    <td>0.5804</td>
    <td>0.6054</td>
    <td>0.7034</td>
    <td>0.6810</td>
    <td>0.6532</td>
    <td><b>0.7406</b></td>
  </tr>
  <tr>
    <td style="white-space: nowrap;">Q-Align ↑</td>
    <td>3.6318</td>
    <td>3.5586</td>
    <td>3.7451</td>
    <td>4.1423</td>
    <td>4.0640</td>
    <td>4.1347</td>
    <td><b>4.3935</b></td>
  </tr>
  <tr>
    <td style="white-space: nowrap;">MUSIQ ↑</td>
    <td>59.50</td>
    <td>57.25</td>
    <td>65.45</td>
    <td>70.38</td>
    <td>67.08</td>
    <td>65.81</td>
    <td><b>73.01</b></td>
  </tr>
  <tr>
    <td style="white-space: nowrap;">MANIQA ↑</td>
    <td>0.3397</td>
    <td>0.2937</td>
    <td>0.4230</td>
    <td>0.4895</td>
    <td>0.4400</td>
    <td>0.3826</td>
    <td><b>0.5589</b></td>
  </tr>
  <tr>
    <td style="white-space: nowrap;">NIMA ↑</td>
    <td>5.0624</td>
    <td>5.0538</td>
    <td>5.2397</td>
    <td>5.3146</td>
    <td>5.2200</td>
    <td>5.0806</td>
    <td><b>5.4836</b></td>
  </tr>
  <tr>
    <td style="white-space: nowrap;">CLIP-IQA ↑</td>
    <td>0.6129</td>
    <td>0.5160</td>
    <td><b>0.7166</b></td>
    <td>0.7063</td>
    <td>0.6950</td>
    <td>0.5767</td>
    <td>0.7122</td>
  </tr>
  <tr>
    <td style="white-space: nowrap;">NIQE ↓</td>
    <td>6.6326</td>
    <td>4.6236</td>
    <td>5.4425</td>
    <td>4.4383</td>
    <td>3.8700</td>
    <td><b>3.6591</b></td>
    <td>3.6742</td>
  </tr>
</tbody>
</table>



<!-- <img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/user_study/hpc.png" alt="User Study Results" width="1200"/> -->

</div>

---

## 🎭 Gallery & Examples

<div align="center">

### 🎨 LucidFlux Gallery

---

### πŸ” Comparison with Open-Source Methods

<table>
<tr align="center">
    <td width="200"><b>LQ</b></td>
    <td width="200"><b>SinSR</b></td>
    <td width="200"><b>SeeSR</b></td>
    <td width="200"><b>SUPIR</b></td>
    <td width="200"><b>DreamClear</b></td>
    <td width="200"><b>Ours</b></td>
</tr>
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/comparison/040.jpg" width="1200"></td></tr>
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/comparison/041.jpg" width="1200"></td></tr>
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/comparison/111.jpg" width="1200"></td></tr>
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/comparison/123.jpg" width="1200"></td></tr>
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/comparison/160.jpg" width="1200"></td></tr>
</table>

<details>
<summary>Show more examples</summary>

<table>
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/comparison/013.jpg" width="1200"></td></tr>
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/comparison/079.jpg" width="1200"></td></tr>
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/comparison/082.jpg" width="1200"></td></tr>
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/comparison/137.jpg" width="1200"></td></tr>
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/comparison/166.jpg" width="1200"></td></tr>
</table>

</details>

---

### πŸ’Ό Comparison with Commercial Models

<table>
<tr align="center">
    <td width="200"><b>LQ</b></td>
    <td width="200"><b>HYPIR</b></td>
    <td width="200"><b>Topaz</b></td>
    <td width="200"><b>SeeDream 4.0</b></td>
    <td width="200"><b>Gemini-NanoBanana</b></td>
    <td width="200"><b>GPT-4o</b></td>
    <td width="200"><b>Ours</b></td>
</tr>
<tr align="center"><td colspan="7"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/commercial_comparison/commercial_061.jpg" width="1400"></td></tr>
<tr align="center"><td colspan="7"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/commercial_comparison/commercial_094.jpg" width="1400"></td></tr>
<tr align="center"><td colspan="7"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/commercial_comparison/commercial_205.jpg" width="1400"></td></tr>
<tr align="center"><td colspan="7"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/commercial_comparison/commercial_209.jpg" width="1400"></td></tr>
</table>

<details>
<summary>Show more examples</summary>

<table>
<tr align="center"><td colspan="7"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/commercial_comparison/commercial_062.jpg" width="1400"></td></tr>
<tr align="center"><td colspan="7"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/commercial_comparison/commercial_160.jpg" width="1400"></td></tr>
<tr align="center"><td colspan="7"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/commercial_comparison/commercial_111.jpg" width="1400"></td></tr>
<tr align="center"><td colspan="7"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/commercial_comparison/commercial_123.jpg" width="1400"></td></tr>
</table>

</details>
</div>

---

## πŸ—οΈ Model Architecture

<div align="center">
<img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/framework/framework.png" alt="LucidFlux Framework Overview" width="1200"/>
<br>
<em><strong>Caption-Free Universal Image Restoration with a Large-Scale Diffusion Transformer</strong></em>
</div>

Our unified framework consists of **four critical components in the training workflow**:

**πŸ”€ Scaling Up Real-world High-Quality Data for Universal Image Restoration**

**🎨 Two Parallel Light-weight Condition Module Branches for Low-Quality Image Conditioning**

**🎯 Timestep and Layer-Adaptive Condition Injection**

**πŸ”„ Semantic Priors from Siglip for Caption-Free Semantic Alignment**


## πŸš€ Quick Start

### πŸ”§ Installation

```bash
# Clone the repository
git clone https://github.com/W2GenAI-Lab/LucidFlux.git
cd LucidFlux

# Create conda environment
conda create -n lucidflux python=3.9
conda activate lucidflux

# Install dependencies
pip install -r requirements.txt

```

### Inference

Prepare models in 2 steps, then run a single command.

1) Login to Hugging Face (required for gated FLUX.1-dev). Skip if already logged-in.

```bash
python -m tools.hf_login --token "$HF_TOKEN"
```

2) Download required weights to fixed paths and export env vars

```bash
# FLUX.1-dev (flow+ae), SwinIR prior, T5, CLIP, SigLIP and LucidFlux checkpoint to ./weights
python -m tools.download_weights --dest weights

# Exports FLUX_DEV_FLOW/FLUX_DEV_AE to your shell
source weights/env.sh
```


Run inference (uses fixed relative paths):

```bash
bash inference.sh
```

You can also obtain results of LucidFlux on RealSR and RealLQ250 from Hugging Face: [**LucidFlux**](https://huggingface.co/W2GenAI/LucidFlux).

## πŸͺͺ License

The provided code and pre-trained weights are licensed under the [FLUX.1 [dev]](LICENSE).

## πŸ™ Acknowledgments

- This code is based on [FLUX](https://github.com/black-forest-labs/flux). Some code are brought from [DreamClear](https://github.com/shallowdream204/DreamClear), [x-flux](https://github.com/XLabs-AI/x-flux). We thank the authors for their awesome work.

- πŸ›οΈ Thanks to our affiliated institutions for their support.
- 🀝 Special thanks to the open-source community for inspiration.

---

## πŸ“¬ Contact

For any questions or inquiries, please reach out to us:

- **Song Fei**: `[email protected]`
- **Tian Ye**: `[email protected]`

## πŸ§‘β€πŸ€β€πŸ§‘ WeChat Group
<details>
  <summary>η‚Ήε‡»ε±•εΌ€δΊŒη»΄η οΌˆWeChat Group QR CodeοΌ‰</summary>

  <br>

  <img src="https://github.com/user-attachments/assets/047faa4e-da63-415c-97a0-8dbe8045a839"
       alt="WeChat Group QR"
       width="320">
</details>