Segformer Fine-Tuned on Custom Sky/Sea/Obstacle Dataset
This model is a fine-tuned version of nvidia/segformer-b0-finetuned-ade-512-512 on a custom dataset with 3 semantic classes:
- Sky
 - Sea
 - Obstacle
 
It is intended for use in vision-based autonomous surface navigation and maritime scene understanding.
Model Details
Model Description
- Base architecture: SegFormer-B0
 - Pretrained on: ADE20K dataset
 - Fine-tuned for: Semantic segmentation on maritime images
 - Number of classes: 3
 - Ignore index: 255
 - Resolution: 512×512 input images
 - Training precision: fp32
 - Framework: PyTorch with 🤗 Transformers
 
Model Sources
- Base model: 
nvidia/segformer-b0-finetuned-ade-512-512 - Codebase: Uses Hugging Face Transformers + Datasets
 
Usage
from transformers import AutoModelForSemanticSegmentation, AutoImageProcessor
from PIL import Image
import torch
# Load model and processor
model = AutoModelForSemanticSegmentation.from_pretrained("Wilbur1240/segformer-b0-finetuned-ade-512-512-finetune-mastr1325")
processor = AutoImageProcessor.from_pretrained("Wilbur1240/segformer-b0-finetuned-ade-512-512-finetune-mastr1325")
# Load and preprocess an image
image = Image.open("example.jpg").convert("RGB")
inputs = processor(images=image, return_tensors="pt")
# Inference
with torch.no_grad():
    outputs = model(**inputs)
    logits = outputs.logits  # [1, num_classes, H, W]
    pred_seg = logits.argmax(dim=1)  # [1, H, W]
- Downloads last month
 - -
 
	Inference Providers
	NEW
	
	
	This model isn't deployed by any Inference Provider.
	🙋
			
		Ask for provider support
Model tree for Wilbur1240/segformer-b0-finetuned-ade-512-512-finetune-mastr1325
Base model
nvidia/segformer-b0-finetuned-ade-512-512