phobert-base-v2_v3

This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1699
  • Accuracy: 0.7991
  • Precision Macro: 0.7995
  • Recall Macro: 0.7994
  • F1 Macro: 0.7991
  • F1 Weighted: 0.7990

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 256
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Macro Recall Macro F1 Macro F1 Weighted
1.086 1.0 72 0.7935 0.6887 0.6938 0.6887 0.6884 0.6882
0.8116 2.0 144 0.6396 0.7459 0.7595 0.7454 0.7452 0.7453
0.4754 3.0 216 0.5853 0.7796 0.7812 0.7801 0.7794 0.7793
0.3729 4.0 288 0.6464 0.7796 0.7827 0.7796 0.7795 0.7795
0.2206 5.0 360 0.6963 0.7845 0.7880 0.7842 0.7842 0.7843
0.161 6.0 432 0.7742 0.7827 0.7876 0.7829 0.7827 0.7826
0.1193 7.0 504 0.8773 0.7876 0.7906 0.7881 0.7873 0.7871
0.0858 8.0 576 0.9057 0.7800 0.7821 0.7797 0.7801 0.7801
0.081 9.0 648 0.9375 0.7871 0.7897 0.7875 0.7872 0.7871
0.0528 10.0 720 0.9239 0.7867 0.7880 0.7869 0.7868 0.7867
0.0459 11.0 792 0.9642 0.7920 0.7928 0.7920 0.7921 0.7921
0.0319 12.0 864 1.0246 0.7951 0.7960 0.7951 0.7952 0.7952
0.0303 13.0 936 1.0632 0.7960 0.7968 0.7963 0.7960 0.7958
0.0235 14.0 1008 1.0870 0.7956 0.7957 0.7955 0.7956 0.7955
0.0182 15.0 1080 1.1385 0.7960 0.7965 0.7963 0.7960 0.7959
0.0114 16.0 1152 1.1546 0.8013 0.8021 0.8012 0.8013 0.8013
0.0119 17.0 1224 1.1719 0.7969 0.7974 0.7972 0.7969 0.7968
0.0111 18.0 1296 1.1749 0.7960 0.7966 0.7963 0.7959 0.7958
0.0067 19.0 1368 1.1719 0.7991 0.7995 0.7994 0.7991 0.7990
0.0151 20.0 1440 1.1699 0.7991 0.7995 0.7994 0.7991 0.7990

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.7.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
-
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for aiface/phobert-base-v2_v3

Finetuned
(291)
this model