phobert-base-v2_v3
This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.1699
- Accuracy: 0.7991
- Precision Macro: 0.7995
- Recall Macro: 0.7994
- F1 Macro: 0.7991
- F1 Weighted: 0.7990
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 256
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | F1 Weighted |
|---|---|---|---|---|---|---|---|---|
| 1.086 | 1.0 | 72 | 0.7935 | 0.6887 | 0.6938 | 0.6887 | 0.6884 | 0.6882 |
| 0.8116 | 2.0 | 144 | 0.6396 | 0.7459 | 0.7595 | 0.7454 | 0.7452 | 0.7453 |
| 0.4754 | 3.0 | 216 | 0.5853 | 0.7796 | 0.7812 | 0.7801 | 0.7794 | 0.7793 |
| 0.3729 | 4.0 | 288 | 0.6464 | 0.7796 | 0.7827 | 0.7796 | 0.7795 | 0.7795 |
| 0.2206 | 5.0 | 360 | 0.6963 | 0.7845 | 0.7880 | 0.7842 | 0.7842 | 0.7843 |
| 0.161 | 6.0 | 432 | 0.7742 | 0.7827 | 0.7876 | 0.7829 | 0.7827 | 0.7826 |
| 0.1193 | 7.0 | 504 | 0.8773 | 0.7876 | 0.7906 | 0.7881 | 0.7873 | 0.7871 |
| 0.0858 | 8.0 | 576 | 0.9057 | 0.7800 | 0.7821 | 0.7797 | 0.7801 | 0.7801 |
| 0.081 | 9.0 | 648 | 0.9375 | 0.7871 | 0.7897 | 0.7875 | 0.7872 | 0.7871 |
| 0.0528 | 10.0 | 720 | 0.9239 | 0.7867 | 0.7880 | 0.7869 | 0.7868 | 0.7867 |
| 0.0459 | 11.0 | 792 | 0.9642 | 0.7920 | 0.7928 | 0.7920 | 0.7921 | 0.7921 |
| 0.0319 | 12.0 | 864 | 1.0246 | 0.7951 | 0.7960 | 0.7951 | 0.7952 | 0.7952 |
| 0.0303 | 13.0 | 936 | 1.0632 | 0.7960 | 0.7968 | 0.7963 | 0.7960 | 0.7958 |
| 0.0235 | 14.0 | 1008 | 1.0870 | 0.7956 | 0.7957 | 0.7955 | 0.7956 | 0.7955 |
| 0.0182 | 15.0 | 1080 | 1.1385 | 0.7960 | 0.7965 | 0.7963 | 0.7960 | 0.7959 |
| 0.0114 | 16.0 | 1152 | 1.1546 | 0.8013 | 0.8021 | 0.8012 | 0.8013 | 0.8013 |
| 0.0119 | 17.0 | 1224 | 1.1719 | 0.7969 | 0.7974 | 0.7972 | 0.7969 | 0.7968 |
| 0.0111 | 18.0 | 1296 | 1.1749 | 0.7960 | 0.7966 | 0.7963 | 0.7959 | 0.7958 |
| 0.0067 | 19.0 | 1368 | 1.1719 | 0.7991 | 0.7995 | 0.7994 | 0.7991 | 0.7990 |
| 0.0151 | 20.0 | 1440 | 1.1699 | 0.7991 | 0.7995 | 0.7994 | 0.7991 | 0.7990 |
Framework versions
- Transformers 4.55.0
- Pytorch 2.7.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- -
Model tree for aiface/phobert-base-v2_v3
Base model
vinai/phobert-base-v2