SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Fine-tuned Models
This model is part of a progressive series of sentence embedding models based on intfloat/multilingual-e5-base, fine-tuned specifically for Dhivehi language understanding.
Each stage leverages a targeted dataset to specialize the model for semantic similarity, question answering, and summarization tasks — improving performance for real-world Dhivehi NLP applications.
| Stage | Task | Model | Dataset | Objective |
|---|---|---|---|---|
| 0 | Base | Multilingual Base | intfloat/multilingual-e5-base |
— |
| 1 | Paraphrase Identification (MNR) | alakxender/e5-dhivehi-paws-mnr |
alakxender/dhivehi-paws-labeled > label=1 Only |
MultipleNegativesRankingLoss |
| 2 | Paraphrase Identification (Cosine) | alakxender/e5-dhivehi-paws-cos |
alakxender/dhivehi-paws-labeled |
CosineSimilarityLoss |
| 3 | Question → Passage Matching | alakxender/e5-dhivehi-qa-mnr |
alakxender/dhivehi-qa-dataset |
MultipleNegativesRankingLoss |
| 4 | News Title → Content | alakxender/e5-dhivehi-articles-mnr |
alakxender/dhivehi-news-corpus |
MultipleNegativesRankingLoss |
| 5 | Summary → Content | alakxender/e5-dhivehi-summaries-mnr |
alakxender/dv-en-parallel-corpus-clean, alakxender/dv-summary-translation-corpus |
MultipleNegativesRankingLoss |
Each model builds upon the previous checkpoint, incrementally enhancing the semantic capabilities of the model for Dhivehi. The goal is to support high-quality sentence embeddings for a wide range of Dhivehi information retrieval and understanding tasks.
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("alakxender/e5-dhivehi-qa-mnr")
# Run inference
sentences = [
'query: އަކްރަމުގެ ދިރިއުޅުމަށް އައި ބަދަލުތަކަކީ ކޮބައިތޯ؟',
'passage: މިގޮތުގެމަތިން އަކްރަމަށް ލިބުނު ޖަވާހިރުތައް ވިއްކައި، ލިބުނު ގިނަގުނަ ފައިސާއިން ޖަވާހިރުގެ ވިޔަފާރިފަށައި، ބައްޕައެކޭ އެއްފަދައިން މަޝްހޫރު ވިޔަފާރިވެރިއަކަށް ވެއްޖެއެވެ. އަދި އަކްރަމާއި ޢާއިލާގެ ދިރިއުޅުން ކުރިއެކޭވެސް އެއްފަދަ ތަނަވަސް ދިރިއުޅުމަކަށް ބަދަލުވެގެން ހިނގައްޖެއެވެ.',
'passage: ސިވިލް ސަރވިސްގެ މުވައްޒަފުން މަޢުލޫމާތު ހާމަކުރުމުގައި ޢަމަލުކުރަންވާނީ ތިރީގައިވާ އުޞޫލުތަކުގެ މަތިންނެވެ. ޤާނޫނާ ގަވާއިދާ އެއްގޮތްވާގޮތުގެމަތިން، މަޢުލޫމާތު ދޭންޖެހޭ ކޮންމެ ޙާލަތެއްގައި ތެދު މަޢުލޫމާތު ދިނުން.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.4978, 0.4952],
# [0.4978, 1.0000, 0.8843],
# [0.4952, 0.8843, 1.0000]])
Training Details
Training Dataset
- Size: 9,232 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 9 tokens
- mean: 17.88 tokens
- max: 43 tokens
- min: 9 tokens
- mean: 62.22 tokens
- max: 256 tokens
- Samples:
sentence_0 sentence_1 query: ދީނީ ތަގްރީރުކުރުމާއި ދީނީ ނަސޭހަތް ދިނުން ކަމަށް ބުނެފައިވަނީ ކޮން ކަމަކަށް؟passage: "ދީނީ ތަގްރީރުކުރުމާއި ދީނީ ނަސޭހަތް ދިނުން" ކަމަށް ބުނެފައި އެވަނީ، ހަބަރުފަތުރާ ވަސީލަތަކުން ނުވަތަ ހާންމު މީހުން ޖަމާވެފައިވާ ތަނެއްގައި ދީނީ ތަގްރީރުކުރުމާއި ދީނީ ނަސޭހަތް ދިނުމަށެވެ. ދީނީ އެއްބައިވަންތަކަން ހިމާޔަތް ކުރުމުގެ ގާނޫނު (ގާނޫނު ނަންބަރު 6/1994) އަށް 1 ވަނަ އިސްލާހު ގެނައުމުގެ ގާނޫނު (ގާނޫނު ނަންބަރު 8/2014) ގެ 7 ވަނަ މާއްދާގެ (ނ) ގައިquery: ގާނޫނީ ގޮތުން ގައިދީން ކަމަށް ބުނެފައިވަނީ ކޮން ބައެއް؟passage: "ގައިދީ" ނުވަތަ "ގައިދީން" ކަމަށް ބުނެފައިއެވަނީ، ޖަލުގައި ތިބޭ މީހުންގެ ތެރެއިން ހުކުމެއް ތަންފީޒުކުރަމުންދާ މީހުންނާއި އަރުވާލަން ނުވަތަ ގޭބަންދަށް ކޯޓުން ހުކުމްކޮށްފައި ތިބޭ މީހުންނަށެވެ. ޖަލުތަކާއި ޕެރޯލްގެ ގާނޫނު (ގާނޫނު ނަންބަރު 14/2013) ގެ 155 ވަނަ މާއްދާގެ (ލ) ގައިquery: އިސްލާމްދީނުގައި ޢިލްމު އުނގެނުމަކީ ކޮބައިތޯ؟passage: ކީރިތި ރަސޫލާ އަންގަވައިފައިވަނީ، [طلب العلم فريضة على كلّ مسلم ومسلمة] [ޢިލްމު އުނގެނުމަކީ ކޮންމެ މުސްލިމް ފިރިހެނަކާއި ކޮންމެ މުސްލިމް އަންހެނެއްގެ މައްޗަށް އޮތް ވާޖިބެކޭ، ފަރުޟެކޭ.] - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 4per_device_eval_batch_size: 4multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 4per_device_eval_batch_size: 4per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.2166 | 500 | 1.2589 |
| 0.4333 | 1000 | 1.0569 |
| 0.6499 | 1500 | 1.0562 |
| 0.8666 | 2000 | 0.9848 |
| 1.0832 | 2500 | 0.9565 |
| 1.2998 | 3000 | 0.9604 |
| 1.5165 | 3500 | 0.958 |
| 1.7331 | 4000 | 0.9232 |
| 1.9497 | 4500 | 0.9202 |
| 2.1664 | 5000 | 0.8813 |
| 2.3830 | 5500 | 0.893 |
| 2.5997 | 6000 | 0.8324 |
| 2.8163 | 6500 | 0.7792 |
Framework Versions
- Python: 3.9.21
- Sentence Transformers: 5.0.0
- Transformers: 4.52.4
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Model tree for alakxender/e5-dhivehi-qa-mnr
Base model
intfloat/multilingual-e5-base