nerui-pt-pl50-4

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0479
  • Location Precision: 0.9333
  • Location Recall: 0.9515
  • Location F1: 0.9423
  • Location Number: 103
  • Organization Precision: 0.9419
  • Organization Recall: 0.9474
  • Organization F1: 0.9446
  • Organization Number: 171
  • Person Precision: 0.9771
  • Person Recall: 0.9771
  • Person F1: 0.9771
  • Person Number: 131
  • Overall Precision: 0.9510
  • Overall Recall: 0.9580
  • Overall F1: 0.9545
  • Overall Accuracy: 0.9912

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100.0

Training results

Training Loss Epoch Step Validation Loss Location Precision Location Recall Location F1 Location Number Organization Precision Organization Recall Organization F1 Organization Number Person Precision Person Recall Person F1 Person Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.8665 1.0 96 0.4224 0.0 0.0 0.0 103 0.1404 0.0468 0.0702 171 0.1818 0.0458 0.0732 131 0.1538 0.0346 0.0565 0.8429
0.3663 2.0 192 0.2041 0.4068 0.4660 0.4344 103 0.6587 0.6433 0.6509 171 0.7261 0.8702 0.7917 131 0.6154 0.6716 0.6423 0.9392
0.1986 3.0 288 0.0988 0.7723 0.7573 0.7647 103 0.7732 0.8772 0.8219 171 0.9474 0.9618 0.9545 131 0.8271 0.8741 0.8499 0.9713
0.1405 4.0 384 0.0792 0.8208 0.8447 0.8325 103 0.8280 0.9006 0.8627 171 0.9343 0.9771 0.9552 131 0.8601 0.9111 0.8849 0.9760
0.1124 5.0 480 0.0597 0.8878 0.8447 0.8657 103 0.8743 0.8947 0.8844 171 0.9621 0.9695 0.9658 131 0.9062 0.9062 0.9062 0.9815
0.0945 6.0 576 0.0551 0.8362 0.9417 0.8858 103 0.9032 0.8187 0.8589 171 0.9697 0.9771 0.9734 131 0.9057 0.9012 0.9035 0.9829
0.0869 7.0 672 0.0455 0.8911 0.8738 0.8824 103 0.8798 0.9415 0.9096 171 0.9845 0.9695 0.9769 131 0.9153 0.9333 0.9242 0.9867
0.0771 8.0 768 0.0429 0.8991 0.9515 0.9245 103 0.9017 0.9123 0.9070 171 0.9697 0.9771 0.9734 131 0.9227 0.9432 0.9328 0.9870
0.0687 9.0 864 0.0448 0.9057 0.9320 0.9187 103 0.8857 0.9064 0.8960 171 0.9549 0.9695 0.9621 131 0.9130 0.9333 0.9231 0.9870
0.0645 10.0 960 0.0380 0.9412 0.9320 0.9366 103 0.9153 0.9474 0.9310 171 0.9692 0.9618 0.9655 131 0.9389 0.9481 0.9435 0.9898
0.0571 11.0 1056 0.0343 0.94 0.9126 0.9261 103 0.8962 0.9591 0.9266 171 0.9769 0.9695 0.9732 131 0.9322 0.9506 0.9413 0.9895
0.056 12.0 1152 0.0425 0.9293 0.8932 0.9109 103 0.8994 0.9415 0.9200 171 0.9621 0.9695 0.9658 131 0.9268 0.9383 0.9325 0.9876
0.0515 13.0 1248 0.0425 0.93 0.9029 0.9163 103 0.8824 0.9649 0.9218 171 0.9545 0.9618 0.9582 131 0.9165 0.9481 0.9320 0.9878
0.0491 14.0 1344 0.0440 0.9238 0.9417 0.9327 103 0.9118 0.9064 0.9091 171 0.9621 0.9695 0.9658 131 0.9312 0.9358 0.9335 0.9878
0.0471 15.0 1440 0.0393 0.9691 0.9126 0.94 103 0.9153 0.9474 0.9310 171 0.9621 0.9695 0.9658 131 0.9433 0.9457 0.9445 0.9890
0.043 16.0 1536 0.0386 0.9057 0.9320 0.9187 103 0.9029 0.9240 0.9133 171 0.9621 0.9695 0.9658 131 0.9225 0.9407 0.9315 0.9873
0.0403 17.0 1632 0.0430 0.97 0.9417 0.9557 103 0.9195 0.9357 0.9275 171 0.9549 0.9695 0.9621 131 0.9435 0.9481 0.9458 0.9898
0.04 18.0 1728 0.0440 0.9245 0.9515 0.9378 103 0.9118 0.9064 0.9091 171 0.9697 0.9771 0.9734 131 0.9338 0.9407 0.9373 0.9881
0.0379 19.0 1824 0.0462 0.8609 0.9612 0.9083 103 0.9434 0.8772 0.9091 171 0.9697 0.9771 0.9734 131 0.9286 0.9309 0.9297 0.9873
0.037 20.0 1920 0.0461 0.8839 0.9612 0.9209 103 0.9107 0.8947 0.9027 171 0.9695 0.9695 0.9695 131 0.9221 0.9358 0.9289 0.9873
0.0368 21.0 2016 0.0481 0.8609 0.9612 0.9083 103 0.9125 0.8538 0.8822 171 0.9621 0.9695 0.9658 131 0.9140 0.9185 0.9163 0.9859
0.0331 22.0 2112 0.0397 0.9238 0.9417 0.9327 103 0.9298 0.9298 0.9298 171 0.9621 0.9695 0.9658 131 0.9387 0.9457 0.9422 0.9887
0.0317 23.0 2208 0.0429 0.9074 0.9515 0.9289 103 0.9286 0.9123 0.9204 171 0.9621 0.9695 0.9658 131 0.9338 0.9407 0.9373 0.9876
0.0339 24.0 2304 0.0436 0.8919 0.9612 0.9252 103 0.9506 0.9006 0.9249 171 0.9621 0.9695 0.9658 131 0.9383 0.9383 0.9383 0.9876
0.0325 25.0 2400 0.0454 0.8839 0.9612 0.9209 103 0.9497 0.8830 0.9152 171 0.9545 0.9618 0.9582 131 0.9330 0.9284 0.9307 0.9873
0.0287 26.0 2496 0.0478 0.9231 0.9320 0.9275 103 0.9123 0.9123 0.9123 171 0.9621 0.9695 0.9658 131 0.9312 0.9358 0.9335 0.9873
0.0288 27.0 2592 0.0451 0.9423 0.9515 0.9469 103 0.9191 0.9298 0.9244 171 0.9621 0.9695 0.9658 131 0.9389 0.9481 0.9435 0.9884
0.0274 28.0 2688 0.0474 0.9159 0.9515 0.9333 103 0.9298 0.9298 0.9298 171 0.9545 0.9618 0.9582 131 0.9341 0.9457 0.9399 0.9867
0.0259 29.0 2784 0.0498 0.9245 0.9515 0.9378 103 0.9249 0.9357 0.9302 171 0.9695 0.9695 0.9695 131 0.9390 0.9506 0.9448 0.9884
0.0248 30.0 2880 0.0496 0.9495 0.9126 0.9307 103 0.8994 0.9415 0.9200 171 0.9621 0.9695 0.9658 131 0.9317 0.9432 0.9374 0.9867
0.0226 31.0 2976 0.0559 0.8829 0.9515 0.9159 103 0.9255 0.8713 0.8976 171 0.9695 0.9695 0.9695 131 0.9280 0.9235 0.9257 0.9854
0.0238 32.0 3072 0.0477 0.9510 0.9417 0.9463 103 0.9138 0.9298 0.9217 171 0.9618 0.9618 0.9618 131 0.9386 0.9432 0.9409 0.9884
0.0218 33.0 3168 0.0555 0.8333 0.9709 0.8969 103 0.9226 0.8363 0.8773 171 0.9695 0.9695 0.9695 131 0.9113 0.9136 0.9125 0.9845
0.0258 34.0 3264 0.0493 0.9083 0.9612 0.9340 103 0.9273 0.8947 0.9107 171 0.9621 0.9695 0.9658 131 0.9335 0.9358 0.9346 0.9873
0.0246 35.0 3360 0.0491 0.8991 0.9515 0.9245 103 0.9118 0.9064 0.9091 171 0.9695 0.9695 0.9695 131 0.9268 0.9383 0.9325 0.9873
0.0215 36.0 3456 0.0474 0.9245 0.9515 0.9378 103 0.9222 0.9006 0.9112 171 0.9618 0.9618 0.9618 131 0.9356 0.9333 0.9345 0.9884
0.0207 37.0 3552 0.0467 0.9406 0.9223 0.9314 103 0.9070 0.9123 0.9096 171 0.9621 0.9695 0.9658 131 0.9333 0.9333 0.9333 0.9876
0.0194 38.0 3648 0.0544 0.9333 0.9515 0.9423 103 0.9128 0.9181 0.9155 171 0.9695 0.9695 0.9695 131 0.9363 0.9432 0.9397 0.9873
0.0204 39.0 3744 0.0415 0.9223 0.9223 0.9223 103 0.92 0.9415 0.9306 171 0.9621 0.9695 0.9658 131 0.9341 0.9457 0.9399 0.9887
0.0184 40.0 3840 0.0441 0.9510 0.9417 0.9463 103 0.8983 0.9298 0.9138 171 0.9695 0.9695 0.9695 131 0.9341 0.9457 0.9399 0.9890
0.0198 41.0 3936 0.0452 0.9688 0.9029 0.9347 103 0.8883 0.9298 0.9086 171 0.9618 0.9618 0.9618 131 0.9310 0.9333 0.9322 0.9884
0.0175 42.0 4032 0.0432 0.9510 0.9417 0.9463 103 0.9253 0.9415 0.9333 171 0.9697 0.9771 0.9734 131 0.9461 0.9531 0.9496 0.9898
0.0158 43.0 4128 0.0483 0.9231 0.9320 0.9275 103 0.9222 0.9006 0.9112 171 0.9695 0.9695 0.9695 131 0.9378 0.9309 0.9343 0.9878
0.0177 44.0 4224 0.0490 0.9245 0.9515 0.9378 103 0.9123 0.9123 0.9123 171 0.9695 0.9695 0.9695 131 0.9338 0.9407 0.9373 0.9884
0.0185 45.0 4320 0.0478 0.9083 0.9612 0.9340 103 0.9226 0.9064 0.9145 171 0.9621 0.9695 0.9658 131 0.9315 0.9407 0.9361 0.9878
0.0164 46.0 4416 0.0473 0.9340 0.9612 0.9474 103 0.9235 0.9181 0.9208 171 0.9697 0.9771 0.9734 131 0.9412 0.9481 0.9446 0.9890
0.0168 47.0 4512 0.0444 0.9406 0.9223 0.9314 103 0.9086 0.9298 0.9191 171 0.9618 0.9618 0.9618 131 0.9337 0.9383 0.9360 0.9887
0.0149 48.0 4608 0.0490 0.9604 0.9417 0.9510 103 0.9138 0.9298 0.9217 171 0.9771 0.9771 0.9771 131 0.9458 0.9481 0.9470 0.9890
0.0154 49.0 4704 0.0490 0.9245 0.9515 0.9378 103 0.9390 0.9006 0.9194 171 0.9697 0.9771 0.9734 131 0.9453 0.9383 0.9418 0.9884
0.0148 50.0 4800 0.0464 0.9252 0.9612 0.9429 103 0.9226 0.9064 0.9145 171 0.9697 0.9771 0.9734 131 0.9386 0.9432 0.9409 0.9895
0.016 51.0 4896 0.0577 0.9083 0.9612 0.9340 103 0.9444 0.8947 0.9189 171 0.9545 0.9618 0.9582 131 0.9380 0.9333 0.9356 0.9876
0.0138 52.0 4992 0.0492 0.9231 0.9320 0.9275 103 0.9226 0.9064 0.9145 171 0.9618 0.9618 0.9618 131 0.9355 0.9309 0.9332 0.9873
0.0137 53.0 5088 0.0522 0.9314 0.9223 0.9268 103 0.9080 0.9240 0.9159 171 0.9618 0.9618 0.9618 131 0.9312 0.9358 0.9335 0.9884
0.0127 54.0 5184 0.0505 0.9159 0.9515 0.9333 103 0.9357 0.9357 0.9357 171 0.9618 0.9618 0.9618 131 0.9389 0.9481 0.9435 0.9887
0.0142 55.0 5280 0.0514 0.9238 0.9417 0.9327 103 0.9345 0.9181 0.9263 171 0.9695 0.9695 0.9695 131 0.9431 0.9407 0.9419 0.9890
0.012 56.0 5376 0.0532 0.9159 0.9515 0.9333 103 0.9286 0.9123 0.9204 171 0.9769 0.9695 0.9732 131 0.9407 0.9407 0.9407 0.9881
0.0141 57.0 5472 0.0524 0.9252 0.9612 0.9429 103 0.9398 0.9123 0.9258 171 0.9542 0.9542 0.9542 131 0.9406 0.9383 0.9394 0.9878
0.0123 58.0 5568 0.0503 0.9159 0.9515 0.9333 103 0.9408 0.9298 0.9353 171 0.9695 0.9695 0.9695 131 0.9435 0.9481 0.9458 0.9887
0.0137 59.0 5664 0.0478 0.9327 0.9417 0.9372 103 0.9235 0.9181 0.9208 171 0.9545 0.9618 0.9582 131 0.9360 0.9383 0.9371 0.9884
0.0112 60.0 5760 0.0517 0.9333 0.9515 0.9423 103 0.9398 0.9123 0.9258 171 0.9695 0.9695 0.9695 131 0.9478 0.9407 0.9442 0.9890
0.012 61.0 5856 0.0424 0.93 0.9029 0.9163 103 0.9357 0.9357 0.9357 171 0.9398 0.9542 0.9470 131 0.9356 0.9333 0.9345 0.9884
0.0116 62.0 5952 0.0487 0.9340 0.9612 0.9474 103 0.9461 0.9240 0.9349 171 0.9621 0.9695 0.9658 131 0.9481 0.9481 0.9481 0.9887
0.0116 63.0 6048 0.0477 0.9327 0.9417 0.9372 103 0.9298 0.9298 0.9298 171 0.9545 0.9618 0.9582 131 0.9386 0.9432 0.9409 0.9887
0.0099 64.0 6144 0.0493 0.9238 0.9417 0.9327 103 0.9337 0.9064 0.9199 171 0.9545 0.9618 0.9582 131 0.9380 0.9333 0.9356 0.9878
0.0127 65.0 6240 0.0442 0.9505 0.9320 0.9412 103 0.9364 0.9474 0.9419 171 0.9695 0.9695 0.9695 131 0.9506 0.9506 0.9506 0.9901
0.0097 66.0 6336 0.0476 0.9340 0.9612 0.9474 103 0.9461 0.9240 0.9349 171 0.9621 0.9695 0.9658 131 0.9481 0.9481 0.9481 0.9890
0.0111 67.0 6432 0.0427 0.9346 0.9709 0.9524 103 0.9415 0.9415 0.9415 171 0.9771 0.9771 0.9771 131 0.9511 0.9605 0.9558 0.9906
0.0092 68.0 6528 0.0484 0.9340 0.9612 0.9474 103 0.9235 0.9181 0.9208 171 0.9771 0.9771 0.9771 131 0.9435 0.9481 0.9458 0.9903
0.0091 69.0 6624 0.0479 0.9346 0.9709 0.9524 103 0.9521 0.9298 0.9408 171 0.9771 0.9771 0.9771 131 0.9556 0.9556 0.9556 0.9898
0.0102 70.0 6720 0.0474 0.9259 0.9709 0.9479 103 0.9573 0.9181 0.9373 171 0.9771 0.9771 0.9771 131 0.9553 0.9506 0.9530 0.9895
0.0099 71.0 6816 0.0448 0.9320 0.9320 0.9320 103 0.9148 0.9415 0.9280 171 0.9771 0.9771 0.9771 131 0.9390 0.9506 0.9448 0.9892
0.0102 72.0 6912 0.0486 0.9333 0.9515 0.9423 103 0.9451 0.9064 0.9254 171 0.9695 0.9695 0.9695 131 0.95 0.9383 0.9441 0.9887
0.0097 73.0 7008 0.0505 0.9245 0.9515 0.9378 103 0.9527 0.9415 0.9471 171 0.9695 0.9695 0.9695 131 0.9507 0.9531 0.9519 0.9895
0.0094 74.0 7104 0.0494 0.9412 0.9320 0.9366 103 0.9353 0.9298 0.9326 171 0.9695 0.9695 0.9695 131 0.9479 0.9432 0.9455 0.9892
0.0083 75.0 7200 0.0489 0.9340 0.9612 0.9474 103 0.9302 0.9357 0.9329 171 0.9695 0.9695 0.9695 131 0.9438 0.9531 0.9484 0.9903
0.0084 76.0 7296 0.0458 0.9245 0.9515 0.9378 103 0.9467 0.9357 0.9412 171 0.9695 0.9695 0.9695 131 0.9483 0.9506 0.9494 0.9898
0.0088 77.0 7392 0.0488 0.9245 0.9515 0.9378 103 0.9401 0.9181 0.9290 171 0.9695 0.9695 0.9695 131 0.9455 0.9432 0.9444 0.9892
0.0091 78.0 7488 0.0486 0.9167 0.9612 0.9384 103 0.9524 0.9357 0.9440 171 0.9771 0.9771 0.9771 131 0.9509 0.9556 0.9532 0.9898
0.0078 79.0 7584 0.0478 0.9167 0.9612 0.9384 103 0.9521 0.9298 0.9408 171 0.9695 0.9695 0.9695 131 0.9483 0.9506 0.9494 0.9892
0.0071 80.0 7680 0.0472 0.9231 0.9320 0.9275 103 0.9306 0.9415 0.9360 171 0.9695 0.9695 0.9695 131 0.9412 0.9481 0.9446 0.9901
0.0095 81.0 7776 0.0462 0.9417 0.9417 0.9417 103 0.9205 0.9474 0.9337 171 0.9771 0.9771 0.9771 131 0.9439 0.9556 0.9497 0.9901
0.008 82.0 7872 0.0491 0.9245 0.9515 0.9378 103 0.9240 0.9240 0.9240 171 0.9771 0.9771 0.9771 131 0.9412 0.9481 0.9446 0.9898
0.0075 83.0 7968 0.0492 0.9412 0.9320 0.9366 103 0.9364 0.9474 0.9419 171 0.9771 0.9771 0.9771 131 0.9507 0.9531 0.9519 0.9901
0.0071 84.0 8064 0.0497 0.9423 0.9515 0.9469 103 0.9306 0.9415 0.9360 171 0.9771 0.9771 0.9771 131 0.9485 0.9556 0.9520 0.9906
0.0074 85.0 8160 0.0506 0.9231 0.9320 0.9275 103 0.9294 0.9240 0.9267 171 0.9771 0.9771 0.9771 131 0.9432 0.9432 0.9432 0.9895
0.0074 86.0 8256 0.0508 0.9252 0.9612 0.9429 103 0.9412 0.9357 0.9384 171 0.9771 0.9771 0.9771 131 0.9485 0.9556 0.9520 0.9903
0.0071 87.0 8352 0.0505 0.9223 0.9223 0.9223 103 0.9253 0.9415 0.9333 171 0.9771 0.9771 0.9771 131 0.9412 0.9481 0.9446 0.9901
0.006 88.0 8448 0.0518 0.9143 0.9320 0.9231 103 0.9357 0.9357 0.9357 171 0.9771 0.9771 0.9771 131 0.9435 0.9481 0.9458 0.9903
0.0085 89.0 8544 0.0490 0.9238 0.9417 0.9327 103 0.9310 0.9474 0.9391 171 0.9771 0.9771 0.9771 131 0.9439 0.9556 0.9497 0.9903
0.0067 90.0 8640 0.0488 0.9245 0.9515 0.9378 103 0.9415 0.9415 0.9415 171 0.9771 0.9771 0.9771 131 0.9485 0.9556 0.9520 0.9909
0.0075 91.0 8736 0.0488 0.9245 0.9515 0.9378 103 0.9415 0.9415 0.9415 171 0.9771 0.9771 0.9771 131 0.9485 0.9556 0.9520 0.9901
0.0064 92.0 8832 0.0488 0.9333 0.9515 0.9423 103 0.9474 0.9474 0.9474 171 0.9771 0.9771 0.9771 131 0.9533 0.9580 0.9557 0.9906
0.007 93.0 8928 0.0497 0.9245 0.9515 0.9378 103 0.9415 0.9415 0.9415 171 0.9771 0.9771 0.9771 131 0.9485 0.9556 0.9520 0.9906
0.0072 94.0 9024 0.0493 0.9333 0.9515 0.9423 103 0.9419 0.9474 0.9446 171 0.9771 0.9771 0.9771 131 0.9510 0.9580 0.9545 0.9912
0.0072 95.0 9120 0.0495 0.9245 0.9515 0.9378 103 0.9415 0.9415 0.9415 171 0.9771 0.9771 0.9771 131 0.9485 0.9556 0.9520 0.9909
0.0063 96.0 9216 0.0481 0.9245 0.9515 0.9378 103 0.9415 0.9415 0.9415 171 0.9771 0.9771 0.9771 131 0.9485 0.9556 0.9520 0.9909
0.0056 97.0 9312 0.0488 0.9151 0.9417 0.9282 103 0.9357 0.9357 0.9357 171 0.9771 0.9771 0.9771 131 0.9436 0.9506 0.9471 0.9903
0.0069 98.0 9408 0.0481 0.9333 0.9515 0.9423 103 0.9419 0.9474 0.9446 171 0.9771 0.9771 0.9771 131 0.9510 0.9580 0.9545 0.9912
0.006 99.0 9504 0.0481 0.9245 0.9515 0.9378 103 0.9357 0.9357 0.9357 171 0.9771 0.9771 0.9771 131 0.9461 0.9531 0.9496 0.9906
0.0063 100.0 9600 0.0479 0.9333 0.9515 0.9423 103 0.9419 0.9474 0.9446 171 0.9771 0.9771 0.9771 131 0.9510 0.9580 0.9545 0.9912

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for apwic/nerui-pt-pl50-4

Finetuned
(388)
this model