docs: add model card
Browse files
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,205 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            license: mit
         | 
| 3 | 
            +
            language: en
         | 
| 4 | 
            +
            library_name: tensorflow
         | 
| 5 | 
            +
            tags:
         | 
| 6 | 
            +
              - medical-imaging
         | 
| 7 | 
            +
              - chest-xray
         | 
| 8 | 
            +
              - pneumonia-detection
         | 
| 9 | 
            +
              - pediatric
         | 
| 10 | 
            +
              - computer-vision
         | 
| 11 | 
            +
              - cross-validation
         | 
| 12 | 
            +
            datasets:
         | 
| 13 | 
            +
              - paultimothymooney/chest-xray-pneumonia
         | 
| 14 | 
            +
              - iamtanmayshukla/pneumonia-radiography-dataset
         | 
| 15 | 
            +
            metrics:
         | 
| 16 | 
            +
              - accuracy
         | 
| 17 | 
            +
              - sensitivity
         | 
| 18 | 
            +
              - specificity
         | 
| 19 | 
            +
            model-index:
         | 
| 20 | 
            +
            - name: PneumoDetectAI
         | 
| 21 | 
            +
              results:
         | 
| 22 | 
            +
              - task:
         | 
| 23 | 
            +
                  type: image-classification
         | 
| 24 | 
            +
                  name: Pediatric Pneumonia Detection
         | 
| 25 | 
            +
                dataset:
         | 
| 26 | 
            +
                  name: Cross-Operator Validation Dataset
         | 
| 27 | 
            +
                  type: medical-imaging
         | 
| 28 | 
            +
                metrics:
         | 
| 29 | 
            +
                  - type: accuracy
         | 
| 30 | 
            +
                    name: Cross-Operator Accuracy
         | 
| 31 | 
            +
                    value: 0.86
         | 
| 32 | 
            +
                  - type: sensitivity
         | 
| 33 | 
            +
                    name: Sensitivity
         | 
| 34 | 
            +
                    value: 0.964
         | 
| 35 | 
            +
                  - type: specificity
         | 
| 36 | 
            +
                    name: Specificity
         | 
| 37 | 
            +
                    value: 0.748
         | 
| 38 | 
            +
            ---
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            # PneumoDetectAI
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            Binary classification model for pneumonia detection in pediatric chest X-rays (ages 1-5). Built with TensorFlow and MobileNetV2, validated on independent operator cohort with 86% accuracy and 96.4% sensitivity.
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            **Author**: Ayushi Rathour  
         | 
| 45 | 
            +
            **Contact**: [email protected]  
         | 
| 46 | 
            +
            **Framework**: TensorFlow 2.19  
         | 
| 47 | 
            +
            **Model Size**: ~14 MB  
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            ## Model Overview
         | 
| 50 | 
            +
             | 
| 51 | 
            +
            PneumoDetectAI is a deep learning model designed to detect pneumonia in chest X-rays of pediatric patients aged 1 to 5 years. The model uses transfer learning from MobileNetV2 for efficient inference while maintaining clinically relevant performance.
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            ### Key Specifications
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            | Property | Value |
         | 
| 56 | 
            +
            |----------|-------|
         | 
| 57 | 
            +
            | **Architecture** | MobileNetV2 (ImageNet pretrained) + custom head |
         | 
| 58 | 
            +
            | **Input Shape** | 224 Γ 224 Γ 3 (RGB) |
         | 
| 59 | 
            +
            | **Output** | Binary classification (NORMAL/PNEUMONIA) |
         | 
| 60 | 
            +
            | **File Format** | TensorFlow SavedModel (.h5) |
         | 
| 61 | 
            +
            | **Model Size** | ~14 MB |
         | 
| 62 | 
            +
            | **Inference Time** | 0.46 seconds on CPU |
         | 
| 63 | 
            +
            | **Target Population** | Pediatric patients (1-5 years) |
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            ### Intended Users
         | 
| 66 | 
            +
            - ML researchers working on medical imaging
         | 
| 67 | 
            +
            - Healthcare AI developers building screening tools
         | 
| 68 | 
            +
            - Students learning medical AI validation approaches
         | 
| 69 | 
            +
            - Radiologists interested in AI-assisted screening
         | 
| 70 | 
            +
             | 
| 71 | 
            +
            ## Performance Metrics
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            | Validation Type | Dataset | Samples | Accuracy | Sensitivity | Specificity |
         | 
| 74 | 
            +
            |-----------------|---------|---------|----------|-------------|-------------|
         | 
| 75 | 
            +
            | **Internal** | Mooney 2018 | 269 | 94.8% | 89.6% | 100% |
         | 
| 76 | 
            +
            | **Cross-Operator** | Radiography 2024 | 485 | **86.0%** | **96.4%** | 74.8% |
         | 
| 77 | 
            +
             | 
| 78 | 
            +
            ### Clinical Interpretation
         | 
| 79 | 
            +
            - **High Sensitivity (96.4%)**: Catches 96 out of 100 pneumonia cases, suitable for screening
         | 
| 80 | 
            +
            - **Moderate Specificity (74.8%)**: 25% false positive rate acceptable for screening tool
         | 
| 81 | 
            +
            - **Generalization**: 8.8% accuracy drop on independent cohort indicates reasonable robustness
         | 
| 82 | 
            +
             | 
| 83 | 
            +
            ## Quick Start Usage
         | 
| 84 | 
            +
             | 
| 85 | 
            +
            ```python
         | 
| 86 | 
            +
            from huggingface_hub import hf_hub_download
         | 
| 87 | 
            +
            import tensorflow as tf
         | 
| 88 | 
            +
            import numpy as np
         | 
| 89 | 
            +
            from PIL import Image
         | 
| 90 | 
            +
             | 
| 91 | 
            +
            # Download and load model
         | 
| 92 | 
            +
            model_path = hf_hub_download(
         | 
| 93 | 
            +
                repo_id="ayushirathour/chest-xray-pneumonia-detection",
         | 
| 94 | 
            +
                filename="best_chest_xray_model.h5"
         | 
| 95 | 
            +
            )
         | 
| 96 | 
            +
            model = tf.keras.models.load_model(model_path)
         | 
| 97 | 
            +
             | 
| 98 | 
            +
            # Preprocess image
         | 
| 99 | 
            +
            def preprocess_xray(image_path):
         | 
| 100 | 
            +
                img = Image.open(image_path).convert("RGB").resize((224, 224))
         | 
| 101 | 
            +
                img_array = np.array(img) / 255.0
         | 
| 102 | 
            +
                return np.expand_dims(img_array, axis=0)
         | 
| 103 | 
            +
             | 
| 104 | 
            +
            # Make prediction
         | 
| 105 | 
            +
            image_array = preprocess_xray("chest_xray.jpg")
         | 
| 106 | 
            +
            probability = model.predict(image_array)[0][0]
         | 
| 107 | 
            +
            diagnosis = "PNEUMONIA" if probability >= 0.5 else "NORMAL"
         | 
| 108 | 
            +
            confidence = probability * 100 if probability >= 0.5 else (1 - probability) * 100
         | 
| 109 | 
            +
             | 
| 110 | 
            +
            print(f"Diagnosis: {diagnosis}")
         | 
| 111 | 
            +
            print(f"Confidence: {confidence:.1f}%")
         | 
| 112 | 
            +
            ```
         | 
| 113 | 
            +
             | 
| 114 | 
            +
            ## Training Details
         | 
| 115 | 
            +
             | 
| 116 | 
            +
            ### Datasets
         | 
| 117 | 
            +
            - **Training Data**: Chest X-Ray Images (Pneumonia) by Paul Timothy Mooney
         | 
| 118 | 
            +
              - Source: Guangzhou Women and Children's Medical Center
         | 
| 119 | 
            +
              - Size: ~5,863 images (pediatric patients aged 1-5)
         | 
| 120 | 
            +
              - Split: Pre-divided train/validation/test
         | 
| 121 | 
            +
             | 
| 122 | 
            +
            - **External Validation**: Pneumonia Radiography Dataset by Tanmay Shukla
         | 
| 123 | 
            +
              - Source: Same hospital, different operators and time period
         | 
| 124 | 
            +
              - Size: 485 independent samples
         | 
| 125 | 
            +
              - Purpose: Cross-operator generalization testing
         | 
| 126 | 
            +
             | 
| 127 | 
            +
            ### Architecture Details
         | 
| 128 | 
            +
            - **Base Model**: MobileNetV2 (ImageNet weights frozen initially)
         | 
| 129 | 
            +
            - **Custom Head**: Global Average Pooling β Dropout (0.5) β Dense (128) β Dense (1, sigmoid)
         | 
| 130 | 
            +
            - **Optimization**: Adam optimizer (lr=0.0001)
         | 
| 131 | 
            +
            - **Loss Function**: Binary crossentropy
         | 
| 132 | 
            +
            - **Training**: 20 epochs with early stopping
         | 
| 133 | 
            +
             | 
| 134 | 
            +
            ## Limitations & Risks
         | 
| 135 | 
            +
             | 
| 136 | 
            +
            ### Technical Limitations
         | 
| 137 | 
            +
            - **Single Institution**: Both datasets from same medical center
         | 
| 138 | 
            +
            - **Age Restriction**: Validated only on pediatric patients (1-5 years)
         | 
| 139 | 
            +
            - **Binary Output**: Cannot distinguish pneumonia subtypes (viral vs bacterial)
         | 
| 140 | 
            +
            - **Image Quality**: Performance degrades with poor quality or non-standard views
         | 
| 141 | 
            +
             | 
| 142 | 
            +
            ### Clinical Limitations
         | 
| 143 | 
            +
            - **False Positive Rate**: 25.2% may increase radiologist workload
         | 
| 144 | 
            +
            - **Screening Only**: Not suitable for definitive diagnosis
         | 
| 145 | 
            +
            - **Population Bias**: Trained on Asian pediatric cohort only
         | 
| 146 | 
            +
            - **No Clinical Context**: Cannot incorporate patient history or symptoms
         | 
| 147 | 
            +
             | 
| 148 | 
            +
            ### Deployment Risks
         | 
| 149 | 
            +
            - **Overconfidence**: High sensitivity may create false sense of security
         | 
| 150 | 
            +
            - **Misuse**: Risk of use without proper medical oversight
         | 
| 151 | 
            +
            - **Generalization**: Performance may vary on different imaging equipment
         | 
| 152 | 
            +
             | 
| 153 | 
            +
            ## Responsible AI & Ethics
         | 
| 154 | 
            +
             | 
| 155 | 
            +
            ### Bias Considerations
         | 
| 156 | 
            +
            - **Population Bias**: Model trained exclusively on Asian pediatric population
         | 
| 157 | 
            +
            - **Institutional Bias**: Single medical center may not represent global imaging practices
         | 
| 158 | 
            +
            - **Age Bias**: Performance on other age groups unknown
         | 
| 159 | 
            +
             | 
| 160 | 
            +
            ### Required Safeguards
         | 
| 161 | 
            +
            - **Human Oversight**: All predictions must be reviewed by qualified radiologists
         | 
| 162 | 
            +
            - **Screening Context**: Should only be used as preliminary screening tool
         | 
| 163 | 
            +
            - **Informed Consent**: Patients must be informed of AI involvement in screening
         | 
| 164 | 
            +
            - **Quality Assurance**: Regular monitoring of real-world performance required
         | 
| 165 | 
            +
             | 
| 166 | 
            +
            ### Regulatory Status
         | 
| 167 | 
            +
            - **Not FDA Approved**: Research prototype only
         | 
| 168 | 
            +
            - **Not CE Marked**: Not approved for clinical use in EU
         | 
| 169 | 
            +
            - **Research Use**: Intended for academic and development purposes only
         | 
| 170 | 
            +
             | 
| 171 | 
            +
            ## Citation
         | 
| 172 | 
            +
             | 
| 173 | 
            +
            ```bibtex
         | 
| 174 | 
            +
            @misc{rathour2025pneumodetectai,
         | 
| 175 | 
            +
                title={PneumoDetectAI: Pediatric Chest X-Ray Pneumonia Detection with Cross-Operator Validation},
         | 
| 176 | 
            +
                author={Rathour, Ayushi},
         | 
| 177 | 
            +
                year={2025},
         | 
| 178 | 
            +
                note={Cross-operator validation on 485 independent samples},
         | 
| 179 | 
            +
                url={https://huggingface.co/ayushirathour/chest-xray-pneumonia-detection}
         | 
| 180 | 
            +
            }
         | 
| 181 | 
            +
            ```
         | 
| 182 | 
            +
             | 
| 183 | 
            +
            ## Acknowledgements
         | 
| 184 | 
            +
             | 
| 185 | 
            +
            ### Datasets
         | 
| 186 | 
            +
            - **Training Dataset**: Chest X-Ray Images (Pneumonia) - Paul Timothy Mooney (Kaggle)
         | 
| 187 | 
            +
            - **Validation Dataset**: Pneumonia Radiography Dataset - Tanmay Shukla (Kaggle)
         | 
| 188 | 
            +
            - **Original Research**: Kermany et al., "Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning", Cell 2018
         | 
| 189 | 
            +
             | 
| 190 | 
            +
            ### Technical Stack
         | 
| 191 | 
            +
            - **Framework**: TensorFlow 2.19
         | 
| 192 | 
            +
            - **Architecture**: MobileNetV2 (Google)
         | 
| 193 | 
            +
            - **Deployment**: Streamlit, FastAPI
         | 
| 194 | 
            +
            - **Hosting**: Hugging Face Hub
         | 
| 195 | 
            +
             | 
| 196 | 
            +
            ## Additional Resources
         | 
| 197 | 
            +
             | 
| 198 | 
            +
            - π **Live Demo**: [PneumoDetectAI Web App](https://pneumodetectai.streamlit.app/)
         | 
| 199 | 
            +
            - π **Source Code**: [GitHub Repository](https://github.com/ayushirathour/chest-xray-pneumonia-detection)
         | 
| 200 | 
            +
            - π **API Documentation**: Available when running locally
         | 
| 201 | 
            +
            - π¬ **Issues & Support**: GitHub Issues or email contact
         | 
| 202 | 
            +
             | 
| 203 | 
            +
            ---
         | 
| 204 | 
            +
             | 
| 205 | 
            +
            **Disclaimer**: This model is for research and educational purposes only. It is not a medical device and should not be used for clinical diagnosis without appropriate medical supervision.
         |