BERT bert-uncased_L-6_H-128_A-2
This model is a PyTorch conversion of the original TensorFlow BERT checkpoint.
Model Details
- Model Type: BERT (Bidirectional Encoder Representations from Transformers)
 - Language: English (uncased)
 - Architecture: 
- Layers: 6
 - Hidden Size: 128
 - Attention Heads: 2
 - Vocabulary Size: 30522
 - Max Position Embeddings: 512
 
 
Model Configuration
{
  "hidden_size": 128,
  "hidden_act": "gelu",
  "initializer_range": 0.02,
  "vocab_size": 30522,
  "hidden_dropout_prob": 0.1,
  "num_attention_heads": 2,
  "type_vocab_size": 2,
  "max_position_embeddings": 512,
  "num_hidden_layers": 6,
  "intermediate_size": 512,
  "attention_probs_dropout_prob": 0.1
}
Usage
from transformers import BertForPreTraining, BertTokenizer
# Load the model and tokenizer
model = BertForPreTraining.from_pretrained('bansalaman18/bert-uncased_L-6_H-128_A-2')
tokenizer = BertTokenizer.from_pretrained('bansalaman18/bert-uncased_L-6_H-128_A-2')
# Example usage
text = "Hello, this is a sample text for BERT."
inputs = tokenizer(text, return_tensors='pt')
outputs = model(**inputs)
Training Data
This model was originally trained on the same data as the standard BERT models:
- English Wikipedia (2500M words)
 - BookCorpus (800M words)
 
Conversion Details
This model was converted from the original TensorFlow checkpoint to PyTorch format using a custom conversion script with the Hugging Face Transformers library.
Citation
@article{devlin2018bert,
  title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding},
  author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
  journal={arXiv preprint arXiv:1810.04805},
  year={2018}
}
- Downloads last month
 - 6
 
	Inference Providers
	NEW
	
	
	This model isn't deployed by any Inference Provider.
	๐
			
		Ask for provider support