File size: 14,915 Bytes
9720c2e
 
fe7385b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9720c2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
from transformers import GPT2LMHeadModel, GPT2Config
import torch
import copy
import torch.nn as nn
import torch.nn.functional as F
import math
from typing import Optional, List

class MultiheadSelfAttention(nn.Module):
    def __init__(self, d_model: int, n_heads: int):
        super().__init__()
        assert d_model % n_heads == 0, "d_model must be divisible by n_heads"
        self.d_model = d_model
        self.n_heads = n_heads
        self.d_head = d_model // n_heads

        # Standard projections
        self.q_proj = nn.Linear(d_model, d_model)
        self.k_proj = nn.Linear(d_model, d_model)
        self.v_proj = nn.Linear(d_model, d_model)
        self.out_proj = nn.Linear(d_model, d_model)

    def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
        B, T, C = x.shape
        H = self.n_heads
        D = self.d_head

        q = self.q_proj(x).view(B, T, H, D).transpose(1, 2)   # (B, H, T, D)
        k = self.k_proj(x).view(B, T, H, D).transpose(1, 2)
        v = self.v_proj(x).view(B, T, H, D).transpose(1, 2)

        att = (q @ k.transpose(-2, -1)) / math.sqrt(D)         # (B, H, T, T)
        if attn_mask is not None:
            att = att + attn_mask  # mask should be broadcastable; use -inf on masked positions
        att = F.softmax(att, dim=-1)
        y = att @ v  # (B, H, T, D)
        y = y.transpose(1, 2).contiguous().view(B, T, C)
        y = self.out_proj(y)
        return y

class MLP(nn.Module):  # Fixed: Now inherits from nn.Module
    def __init__(self, d_model: int, d_ff: int):
        super().__init__()
        self.fc1 = nn.Linear(d_model, d_ff)
        self.fc2 = nn.Linear(d_ff, d_model)
        self.activation = nn.ReLU()
    
    def forward(self, x: torch.Tensor):
        return self.fc2(self.activation(self.fc1(x)))

class TransformerLayer(nn.Module):
    def __init__(self, d_model: int, n_heads: int, d_ff: int, dropout: float = 0.1):
        super().__init__()
        self.ln1 = nn.LayerNorm(d_model)
        self.ln2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        self.self_attn = MultiheadSelfAttention(d_model, n_heads)
        self.mlp = MLP(d_model, d_ff)

    def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
        y = self.self_attn(self.ln1(x), attn_mask)
        x = x + self.dropout(y)
        y = self.mlp(self.ln2(x))
        return x + self.dropout(y)

class Transformer(nn.Module):
    def __init__(self, n_layers: int, d_model: int, n_heads: int, d_ff: int, vocab_size: int, dropout: float = 0.1):
        super().__init__()
        self.d_model = d_model
        self.n_heads = n_heads
        self.n_layers = n_layers
        self.d_ff = d_ff
        self.tok_emb = nn.Embedding(vocab_size, d_model)
        self.pos_emb = nn.Embedding(2048, d_model)  # simple fixed max length
        self.layers = nn.ModuleList([
            TransformerLayer(d_model, n_heads, d_ff, dropout) for _ in range(n_layers)
        ])
        self.ln_f = nn.LayerNorm(d_model)  # Added missing final LayerNorm
        self.lm_head = nn.Linear(d_model, vocab_size, bias=False)
        self.lm_head.weight = self.tok_emb.weight  # weight tying
        
    def forward(self, idx: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
        B, T = idx.shape
        pos = torch.arange(0, T, device=idx.device).unsqueeze(0)
        x = self.tok_emb(idx) + self.pos_emb(pos)
        for layer in self.layers:
            x = layer(x, attn_mask)
        x = self.ln_f(x)
        return self.lm_head(x)
    
# ---- LoRA ----
class LoRAAdapter(nn.Module):
    def __init__(self, in_features: int, out_features: int, rank: int, alpha: float = 1.0, 
                 weight: Optional[torch.Tensor] = None):
        super().__init__()
        self.rank = rank
        self.alpha = alpha
        if rank > 0:
            self.A = nn.Parameter(torch.zeros((rank, in_features)))
            self.B = nn.Parameter(torch.zeros((out_features, rank)))
            
            # Initialize with SVD if base weight is provided
            if weight is not None:
                U, S, Vh = torch.linalg.svd(weight, full_matrices=False)
                U = U[:, :rank]
                S = S[:rank]
                Vh = Vh[:rank, :]
                self.A.data = Vh  # (rank, in_features)
                self.B.data = U @ torch.diag(S)  # (out_features, rank)
            else:
                nn.init.normal_(self.A, std=1/rank)
                nn.init.zeros_(self.B)
        else:
            self.register_parameter('A', None)
            self.register_parameter('B', None)

    def delta(self) -> Optional[torch.Tensor]:
        if self.rank == 0 or self.A is None or self.B is None:
            return None
        return (self.B @ self.A) * (self.alpha / self.rank)  # (out, in)

    def lora_parameters(self):
        if self.A is not None:
            yield self.A
        if self.B is not None:
            yield self.B

class LoRALinear(nn.Module):
    def __init__(self, linear: nn.Linear, rank: int, alpha: float = 1.0, num_repeats: int = 1):
        super().__init__()
        self.linear = linear  # base frozen linear
        self.rank = rank
        self.num_repeats = num_repeats

        if rank > 0:
            self.loras = nn.ModuleList([
                LoRAAdapter(linear.in_features, linear.out_features, rank, alpha)
                for _ in range(num_repeats)
            ])
        else:
            self.loras = nn.ModuleList([])

    def forward(self, x, repeat_idx: int = 0):
        out = self.linear(x)  # [batch, ..., out_features]
        if self.rank == 0:
            return out
        delta = self.loras[repeat_idx].delta()  # (out, in)
        if delta is not None:
            delta_t = delta  # nn.Linear expects (out, in)
            return out + F.linear(x, delta_t)
        return out

    def lora_parameters(self):
        for lora in self.loras:
            yield from lora.lora_parameters()


class LoRAConv1D(nn.Module):
    """GPT-2 style Conv1D with LoRA support."""
    def __init__(self, conv1d, rank: int, alpha: float = 1.0, num_repeats: int = 1):
        super().__init__()
        self.conv1d = conv1d  # base GPT-2 Conv1D
        self.rank = rank
        self.num_repeats = num_repeats
        in_features, out_features = conv1d.weight.shape  # GPT-2 Conv1D: [in, out]
        
        # Special handling for c_attn layer which has 3x output features
        self.is_c_attn = (out_features % 3 == 0) and ("c_attn" in str(conv1d))
        self.split_size = out_features // 3 if self.is_c_attn else out_features

        if rank > 0:
            if self.is_c_attn:
                # Create separate LoRA adapters for Q, K, V projections
                self.loras = nn.ModuleList([
                    nn.ModuleList([
                        LoRAAdapter(in_features, self.split_size, rank, alpha)
                        for _ in range(3)  # Q, K, V
                    ]) for _ in range(num_repeats)
                ])
            else:
                self.loras = nn.ModuleList([
                    LoRAAdapter(in_features, out_features, rank, alpha)
                    for _ in range(num_repeats)
                ])
        else:
            self.loras = nn.ModuleList([])

    def forward(self, x, repeat_idx: int = 0):
        """
        x: [batch, seq_len, in_features]
        returns: [batch, seq_len, out_features]
        """
        out = self.conv1d(x)
        if self.rank == 0 or len(self.loras) == 0:
            return out

        if self.is_c_attn:
            # Handle Q, K, V projections separately
            deltas = []
            for i in range(3):
                delta = self.loras[repeat_idx][i].delta()  # (split_size, in)
                if delta is not None:
                    delta_t = delta.T  # (in, split_size)
                    deltas.append(torch.matmul(x, delta_t))
            if deltas:
                return out + torch.cat(deltas, dim=-1)
            return out
        else:
            delta = self.loras[repeat_idx].delta()  # (out, in)
            if delta is not None:
                delta_t = delta.T  # (in, out)
                return out + torch.matmul(x, delta_t)
        return out
    
    def lora_parameters(self):
        if self.is_c_attn:
            for lora_group in self.loras:
                for lora in lora_group:
                    yield from lora.lora_parameters()
        else:
            for lora in self.loras:
                yield from lora.lora_parameters()

class SharedAttention(nn.Module):
    def __init__(self, base_attn, num_repeats: int, lora_rank: int, lora_alpha: float):
        super().__init__()
        self.n_heads = base_attn.n_heads
        self.d_head = base_attn.d_head
        self.d_model = base_attn.d_model

        self.q_proj = LoRALinear(base_attn.q_proj, lora_rank, lora_alpha, num_repeats)
        self.k_proj = LoRALinear(base_attn.k_proj, lora_rank, lora_alpha, num_repeats)
        self.v_proj = LoRALinear(base_attn.v_proj, lora_rank, lora_alpha, num_repeats)
        self.out_proj = LoRALinear(base_attn.out_proj, lora_rank, lora_alpha, num_repeats)

    def forward(self, x, repeat_idx: int, attn_mask: Optional[torch.Tensor] = None):
        B, T, C = x.shape
        H, D = self.n_heads, self.d_head

        q = self.q_proj(x, repeat_idx).view(B, T, H, D).transpose(1,2)
        k = self.k_proj(x, repeat_idx).view(B, T, H, D).transpose(1,2)
        v = self.v_proj(x, repeat_idx).view(B, T, H, D).transpose(1,2)

        att = (q @ k.transpose(-2, -1)) / math.sqrt(D)
        if attn_mask is not None:
            att = att + attn_mask
        att = F.softmax(att, dim=-1)
        y = att @ v
        y = y.transpose(1,2).contiguous().view(B, T, C)
        return self.out_proj(y, repeat_idx)

class SharedMLP(nn.Module):
    def __init__(self, base_mlp, num_repeats: int, lora_rank: int, lora_alpha: float):
        super().__init__()
        self.fc1 = LoRALinear(base_mlp.fc1, lora_rank, lora_alpha, num_repeats)
        self.fc2 = LoRALinear(base_mlp.fc2, lora_rank, lora_alpha, num_repeats)
        self.act = base_mlp.act

    def forward(self, x, repeat_idx: int):
        return self.fc2(self.act(self.fc1(x, repeat_idx)), repeat_idx)

class SharedTransformerLayer(nn.Module):
    def __init__(self, base_layer, num_repeats: int, lora_rank: int, lora_alpha: float):
        super().__init__()
        self.ln1 = base_layer.ln1
        self.ln2 = base_layer.ln2
        self.dropout1 = base_layer.dropout1
        self.dropout2 = base_layer.dropout2
        self.attn = SharedAttention(base_layer.attn, num_repeats, lora_rank, lora_alpha)
        self.mlp = SharedMLP(base_layer.mlp, num_repeats, lora_rank, lora_alpha)

    def forward(self, x, repeat_idx: int, attn_mask: Optional[torch.Tensor] = None):
        y = self.attn(self.ln1(x), repeat_idx, attn_mask)
        x = x + self.dropout1(y)
        y = self.mlp(self.ln2(x), repeat_idx)
        x = x + self.dropout2(y)
        return x

# ---- Conversion Utilities ----
def average_weights(layers, attr):
    weights = [getattr(layer, attr).weight.data for layer in layers]
    return torch.stack(weights, dim=0).mean(dim=0)


def initialize_lora_with_svd(lora_layer, original_weights, repeat_indices, rank):
    """
    original_weights: list of original weights for each repeat index
    repeat_indices: which repeat indices these weights correspond to
    """
    shared_weight = lora_layer.base_layer.weight.data.clone()
    
    for idx, orig_weight in zip(repeat_indices, original_weights):
        residual = orig_weight - shared_weight
        U, S, Vh = torch.linalg.svd(residual, full_matrices=False)
        
        # Truncate to rank
        U = U[:, :rank]
        S = S[:rank]
        Vh = Vh[:rank, :]
        
        # Initialize LoRA weights
        lora_layer.lora_A[idx].weight.data = Vh  # A = Vᵣᵀ
        lora_layer.lora_B[idx].weight.data = U @ torch.diag(S)  # B = UᵣΣᵣ

def convert_to_recursive(model, K=2, rank=8, lora_alpha=1.0):
    n_layers = len(model.transformer.h)
    new_blocks = []
    
    for b in range(n_layers // K):
        block_layers = model.transformer.h[b*K:(b+1)*K]
        base_layer = copy.deepcopy(block_layers[0])
        
        # Average weights across the block for shared parameters
        with torch.no_grad():
            if hasattr(base_layer.attn, 'c_attn'):
                shared_weight = average_weights([l.attn for l in block_layers], 'c_attn')
                base_layer.attn.c_attn.weight.data = shared_weight
                
            if hasattr(base_layer.attn, 'c_proj'):
                shared_weight = average_weights([l.attn for l in block_layers], 'c_proj')
                base_layer.attn.c_proj.weight.data = shared_weight
                
            if hasattr(base_layer.mlp, 'c_fc'):
                shared_weight = average_weights([l.mlp for l in block_layers], 'c_fc')
                base_layer.mlp.c_fc.weight.data = shared_weight
                
            if hasattr(base_layer.mlp, 'c_proj'):
                shared_weight = average_weights([l.mlp for l in block_layers], 'c_proj')
                base_layer.mlp.c_proj.weight.data = shared_weight
        
        # Convert to LoRA
        if hasattr(base_layer.attn, 'c_attn'):
            base_layer.attn.c_attn = LoRAConv1D(
                base_layer.attn.c_attn, rank, lora_alpha, K
            )
        
        if hasattr(base_layer.attn, 'c_proj'):
            base_layer.attn.c_proj = LoRAConv1D(
                base_layer.attn.c_proj, rank, lora_alpha, K
            )
            
        if hasattr(base_layer.mlp, 'c_fc'):
            base_layer.mlp.c_fc = LoRAConv1D(
                base_layer.mlp.c_fc, rank, lora_alpha, K
            )
            
        if hasattr(base_layer.mlp, 'c_proj'):
            base_layer.mlp.c_proj = LoRAConv1D(
                base_layer.mlp.c_proj, rank, lora_alpha, K
            )
        
        new_blocks.append(base_layer)
    
    model.transformer.h = nn.ModuleList(new_blocks)
    return model

class RecursiveGPT2Config(GPT2Config):
    model_type = "recursive_gpt2"
    
    def __init__(self, K=2, rank=8, **kwargs):
        super().__init__(**kwargs)
        self.K = K
        self.rank = rank

class RecursiveGPT2LMHeadModel(GPT2LMHeadModel):
    config_class = RecursiveGPT2Config
    
    def __init__(self, config):
        # Initialize as regular GPT2 first
        super().__init__(config)
        
        # Apply recursive modifications
        convert_to_recursive(self, K=config.K, rank=config.rank)
        
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        # This ensures the recursive modifications are applied when loading
        model = super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        return model