File size: 14,915 Bytes
9720c2e fe7385b 9720c2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
from transformers import GPT2LMHeadModel, GPT2Config
import torch
import copy
import torch.nn as nn
import torch.nn.functional as F
import math
from typing import Optional, List
class MultiheadSelfAttention(nn.Module):
def __init__(self, d_model: int, n_heads: int):
super().__init__()
assert d_model % n_heads == 0, "d_model must be divisible by n_heads"
self.d_model = d_model
self.n_heads = n_heads
self.d_head = d_model // n_heads
# Standard projections
self.q_proj = nn.Linear(d_model, d_model)
self.k_proj = nn.Linear(d_model, d_model)
self.v_proj = nn.Linear(d_model, d_model)
self.out_proj = nn.Linear(d_model, d_model)
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
B, T, C = x.shape
H = self.n_heads
D = self.d_head
q = self.q_proj(x).view(B, T, H, D).transpose(1, 2) # (B, H, T, D)
k = self.k_proj(x).view(B, T, H, D).transpose(1, 2)
v = self.v_proj(x).view(B, T, H, D).transpose(1, 2)
att = (q @ k.transpose(-2, -1)) / math.sqrt(D) # (B, H, T, T)
if attn_mask is not None:
att = att + attn_mask # mask should be broadcastable; use -inf on masked positions
att = F.softmax(att, dim=-1)
y = att @ v # (B, H, T, D)
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.out_proj(y)
return y
class MLP(nn.Module): # Fixed: Now inherits from nn.Module
def __init__(self, d_model: int, d_ff: int):
super().__init__()
self.fc1 = nn.Linear(d_model, d_ff)
self.fc2 = nn.Linear(d_ff, d_model)
self.activation = nn.ReLU()
def forward(self, x: torch.Tensor):
return self.fc2(self.activation(self.fc1(x)))
class TransformerLayer(nn.Module):
def __init__(self, d_model: int, n_heads: int, d_ff: int, dropout: float = 0.1):
super().__init__()
self.ln1 = nn.LayerNorm(d_model)
self.ln2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
self.self_attn = MultiheadSelfAttention(d_model, n_heads)
self.mlp = MLP(d_model, d_ff)
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
y = self.self_attn(self.ln1(x), attn_mask)
x = x + self.dropout(y)
y = self.mlp(self.ln2(x))
return x + self.dropout(y)
class Transformer(nn.Module):
def __init__(self, n_layers: int, d_model: int, n_heads: int, d_ff: int, vocab_size: int, dropout: float = 0.1):
super().__init__()
self.d_model = d_model
self.n_heads = n_heads
self.n_layers = n_layers
self.d_ff = d_ff
self.tok_emb = nn.Embedding(vocab_size, d_model)
self.pos_emb = nn.Embedding(2048, d_model) # simple fixed max length
self.layers = nn.ModuleList([
TransformerLayer(d_model, n_heads, d_ff, dropout) for _ in range(n_layers)
])
self.ln_f = nn.LayerNorm(d_model) # Added missing final LayerNorm
self.lm_head = nn.Linear(d_model, vocab_size, bias=False)
self.lm_head.weight = self.tok_emb.weight # weight tying
def forward(self, idx: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
B, T = idx.shape
pos = torch.arange(0, T, device=idx.device).unsqueeze(0)
x = self.tok_emb(idx) + self.pos_emb(pos)
for layer in self.layers:
x = layer(x, attn_mask)
x = self.ln_f(x)
return self.lm_head(x)
# ---- LoRA ----
class LoRAAdapter(nn.Module):
def __init__(self, in_features: int, out_features: int, rank: int, alpha: float = 1.0,
weight: Optional[torch.Tensor] = None):
super().__init__()
self.rank = rank
self.alpha = alpha
if rank > 0:
self.A = nn.Parameter(torch.zeros((rank, in_features)))
self.B = nn.Parameter(torch.zeros((out_features, rank)))
# Initialize with SVD if base weight is provided
if weight is not None:
U, S, Vh = torch.linalg.svd(weight, full_matrices=False)
U = U[:, :rank]
S = S[:rank]
Vh = Vh[:rank, :]
self.A.data = Vh # (rank, in_features)
self.B.data = U @ torch.diag(S) # (out_features, rank)
else:
nn.init.normal_(self.A, std=1/rank)
nn.init.zeros_(self.B)
else:
self.register_parameter('A', None)
self.register_parameter('B', None)
def delta(self) -> Optional[torch.Tensor]:
if self.rank == 0 or self.A is None or self.B is None:
return None
return (self.B @ self.A) * (self.alpha / self.rank) # (out, in)
def lora_parameters(self):
if self.A is not None:
yield self.A
if self.B is not None:
yield self.B
class LoRALinear(nn.Module):
def __init__(self, linear: nn.Linear, rank: int, alpha: float = 1.0, num_repeats: int = 1):
super().__init__()
self.linear = linear # base frozen linear
self.rank = rank
self.num_repeats = num_repeats
if rank > 0:
self.loras = nn.ModuleList([
LoRAAdapter(linear.in_features, linear.out_features, rank, alpha)
for _ in range(num_repeats)
])
else:
self.loras = nn.ModuleList([])
def forward(self, x, repeat_idx: int = 0):
out = self.linear(x) # [batch, ..., out_features]
if self.rank == 0:
return out
delta = self.loras[repeat_idx].delta() # (out, in)
if delta is not None:
delta_t = delta # nn.Linear expects (out, in)
return out + F.linear(x, delta_t)
return out
def lora_parameters(self):
for lora in self.loras:
yield from lora.lora_parameters()
class LoRAConv1D(nn.Module):
"""GPT-2 style Conv1D with LoRA support."""
def __init__(self, conv1d, rank: int, alpha: float = 1.0, num_repeats: int = 1):
super().__init__()
self.conv1d = conv1d # base GPT-2 Conv1D
self.rank = rank
self.num_repeats = num_repeats
in_features, out_features = conv1d.weight.shape # GPT-2 Conv1D: [in, out]
# Special handling for c_attn layer which has 3x output features
self.is_c_attn = (out_features % 3 == 0) and ("c_attn" in str(conv1d))
self.split_size = out_features // 3 if self.is_c_attn else out_features
if rank > 0:
if self.is_c_attn:
# Create separate LoRA adapters for Q, K, V projections
self.loras = nn.ModuleList([
nn.ModuleList([
LoRAAdapter(in_features, self.split_size, rank, alpha)
for _ in range(3) # Q, K, V
]) for _ in range(num_repeats)
])
else:
self.loras = nn.ModuleList([
LoRAAdapter(in_features, out_features, rank, alpha)
for _ in range(num_repeats)
])
else:
self.loras = nn.ModuleList([])
def forward(self, x, repeat_idx: int = 0):
"""
x: [batch, seq_len, in_features]
returns: [batch, seq_len, out_features]
"""
out = self.conv1d(x)
if self.rank == 0 or len(self.loras) == 0:
return out
if self.is_c_attn:
# Handle Q, K, V projections separately
deltas = []
for i in range(3):
delta = self.loras[repeat_idx][i].delta() # (split_size, in)
if delta is not None:
delta_t = delta.T # (in, split_size)
deltas.append(torch.matmul(x, delta_t))
if deltas:
return out + torch.cat(deltas, dim=-1)
return out
else:
delta = self.loras[repeat_idx].delta() # (out, in)
if delta is not None:
delta_t = delta.T # (in, out)
return out + torch.matmul(x, delta_t)
return out
def lora_parameters(self):
if self.is_c_attn:
for lora_group in self.loras:
for lora in lora_group:
yield from lora.lora_parameters()
else:
for lora in self.loras:
yield from lora.lora_parameters()
class SharedAttention(nn.Module):
def __init__(self, base_attn, num_repeats: int, lora_rank: int, lora_alpha: float):
super().__init__()
self.n_heads = base_attn.n_heads
self.d_head = base_attn.d_head
self.d_model = base_attn.d_model
self.q_proj = LoRALinear(base_attn.q_proj, lora_rank, lora_alpha, num_repeats)
self.k_proj = LoRALinear(base_attn.k_proj, lora_rank, lora_alpha, num_repeats)
self.v_proj = LoRALinear(base_attn.v_proj, lora_rank, lora_alpha, num_repeats)
self.out_proj = LoRALinear(base_attn.out_proj, lora_rank, lora_alpha, num_repeats)
def forward(self, x, repeat_idx: int, attn_mask: Optional[torch.Tensor] = None):
B, T, C = x.shape
H, D = self.n_heads, self.d_head
q = self.q_proj(x, repeat_idx).view(B, T, H, D).transpose(1,2)
k = self.k_proj(x, repeat_idx).view(B, T, H, D).transpose(1,2)
v = self.v_proj(x, repeat_idx).view(B, T, H, D).transpose(1,2)
att = (q @ k.transpose(-2, -1)) / math.sqrt(D)
if attn_mask is not None:
att = att + attn_mask
att = F.softmax(att, dim=-1)
y = att @ v
y = y.transpose(1,2).contiguous().view(B, T, C)
return self.out_proj(y, repeat_idx)
class SharedMLP(nn.Module):
def __init__(self, base_mlp, num_repeats: int, lora_rank: int, lora_alpha: float):
super().__init__()
self.fc1 = LoRALinear(base_mlp.fc1, lora_rank, lora_alpha, num_repeats)
self.fc2 = LoRALinear(base_mlp.fc2, lora_rank, lora_alpha, num_repeats)
self.act = base_mlp.act
def forward(self, x, repeat_idx: int):
return self.fc2(self.act(self.fc1(x, repeat_idx)), repeat_idx)
class SharedTransformerLayer(nn.Module):
def __init__(self, base_layer, num_repeats: int, lora_rank: int, lora_alpha: float):
super().__init__()
self.ln1 = base_layer.ln1
self.ln2 = base_layer.ln2
self.dropout1 = base_layer.dropout1
self.dropout2 = base_layer.dropout2
self.attn = SharedAttention(base_layer.attn, num_repeats, lora_rank, lora_alpha)
self.mlp = SharedMLP(base_layer.mlp, num_repeats, lora_rank, lora_alpha)
def forward(self, x, repeat_idx: int, attn_mask: Optional[torch.Tensor] = None):
y = self.attn(self.ln1(x), repeat_idx, attn_mask)
x = x + self.dropout1(y)
y = self.mlp(self.ln2(x), repeat_idx)
x = x + self.dropout2(y)
return x
# ---- Conversion Utilities ----
def average_weights(layers, attr):
weights = [getattr(layer, attr).weight.data for layer in layers]
return torch.stack(weights, dim=0).mean(dim=0)
def initialize_lora_with_svd(lora_layer, original_weights, repeat_indices, rank):
"""
original_weights: list of original weights for each repeat index
repeat_indices: which repeat indices these weights correspond to
"""
shared_weight = lora_layer.base_layer.weight.data.clone()
for idx, orig_weight in zip(repeat_indices, original_weights):
residual = orig_weight - shared_weight
U, S, Vh = torch.linalg.svd(residual, full_matrices=False)
# Truncate to rank
U = U[:, :rank]
S = S[:rank]
Vh = Vh[:rank, :]
# Initialize LoRA weights
lora_layer.lora_A[idx].weight.data = Vh # A = Vᵣᵀ
lora_layer.lora_B[idx].weight.data = U @ torch.diag(S) # B = UᵣΣᵣ
def convert_to_recursive(model, K=2, rank=8, lora_alpha=1.0):
n_layers = len(model.transformer.h)
new_blocks = []
for b in range(n_layers // K):
block_layers = model.transformer.h[b*K:(b+1)*K]
base_layer = copy.deepcopy(block_layers[0])
# Average weights across the block for shared parameters
with torch.no_grad():
if hasattr(base_layer.attn, 'c_attn'):
shared_weight = average_weights([l.attn for l in block_layers], 'c_attn')
base_layer.attn.c_attn.weight.data = shared_weight
if hasattr(base_layer.attn, 'c_proj'):
shared_weight = average_weights([l.attn for l in block_layers], 'c_proj')
base_layer.attn.c_proj.weight.data = shared_weight
if hasattr(base_layer.mlp, 'c_fc'):
shared_weight = average_weights([l.mlp for l in block_layers], 'c_fc')
base_layer.mlp.c_fc.weight.data = shared_weight
if hasattr(base_layer.mlp, 'c_proj'):
shared_weight = average_weights([l.mlp for l in block_layers], 'c_proj')
base_layer.mlp.c_proj.weight.data = shared_weight
# Convert to LoRA
if hasattr(base_layer.attn, 'c_attn'):
base_layer.attn.c_attn = LoRAConv1D(
base_layer.attn.c_attn, rank, lora_alpha, K
)
if hasattr(base_layer.attn, 'c_proj'):
base_layer.attn.c_proj = LoRAConv1D(
base_layer.attn.c_proj, rank, lora_alpha, K
)
if hasattr(base_layer.mlp, 'c_fc'):
base_layer.mlp.c_fc = LoRAConv1D(
base_layer.mlp.c_fc, rank, lora_alpha, K
)
if hasattr(base_layer.mlp, 'c_proj'):
base_layer.mlp.c_proj = LoRAConv1D(
base_layer.mlp.c_proj, rank, lora_alpha, K
)
new_blocks.append(base_layer)
model.transformer.h = nn.ModuleList(new_blocks)
return model
class RecursiveGPT2Config(GPT2Config):
model_type = "recursive_gpt2"
def __init__(self, K=2, rank=8, **kwargs):
super().__init__(**kwargs)
self.K = K
self.rank = rank
class RecursiveGPT2LMHeadModel(GPT2LMHeadModel):
config_class = RecursiveGPT2Config
def __init__(self, config):
# Initialize as regular GPT2 first
super().__init__(config)
# Apply recursive modifications
convert_to_recursive(self, K=config.K, rank=config.rank)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
# This ensures the recursive modifications are applied when loading
model = super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
return model |