cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual
This model is a fine-tuned version of bert-base-multilingual-cased on the 
cardiffnlp/tweet_sentiment_multilingual (all) 
via tweetnlp.
Training split is train and parameters have been tuned on the validation split validation.
Following metrics are achieved on the test split test (link).
- F1 (micro): 0.6169540229885058
- F1 (macro): 0.6168385894019698
- Accuracy: 0.6169540229885058
Usage
Install tweetnlp via pip.
pip install tweetnlp
Load the model in python.
import tweetnlp
model = tweetnlp.Classifier("cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual", max_length=128)
model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}')
Reference
@inproceedings{dimosthenis-etal-2022-twitter,
    title = "{T}witter {T}opic {C}lassification",
    author = "Antypas, Dimosthenis  and
    Ushio, Asahi  and
    Camacho-Collados, Jose  and
    Neves, Leonardo  and
    Silva, Vitor  and
    Barbieri, Francesco",
    booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
    month = oct,
    year = "2022",
    address = "Gyeongju, Republic of Korea",
    publisher = "International Committee on Computational Linguistics"
}
- Downloads last month
- 5
Model tree for cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual
Dataset used to train cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual
Evaluation results
- Micro F1 (cardiffnlp/tweet_sentiment_multilingual/all) on cardiffnlp/tweet_sentiment_multilingualtest set self-reported0.617
- Macro F1 (cardiffnlp/tweet_sentiment_multilingual/all) on cardiffnlp/tweet_sentiment_multilingualtest set self-reported0.617
- Accuracy (cardiffnlp/tweet_sentiment_multilingual/all) on cardiffnlp/tweet_sentiment_multilingualtest set self-reported0.617
