0c4b852bd4b5215dce3c285f32ad7f8b
This model is a fine-tuned version of google-bert/bert-large-cased-whole-word-masking on the nyu-mll/glue [mrpc] dataset. It achieves the following results on the evaluation set:
- Loss: 0.6438
- Data Size: 1.0
- Epoch Runtime: 14.6836
- Accuracy: 0.6651
- F1 Macro: 0.3994
- Rouge1: 0.6657
- Rouge2: 0.0
- Rougel: 0.6645
- Rougelsum: 0.6651
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.7208 | 0 | 1.9003 | 0.4935 | 0.4380 | 0.4935 | 0.0 | 0.4935 | 0.4941 |
| No log | 1 | 114 | 0.6822 | 0.0078 | 3.2793 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| No log | 2 | 228 | 0.6355 | 0.0156 | 2.6180 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| No log | 3 | 342 | 0.6397 | 0.0312 | 3.2506 | 0.6692 | 0.4158 | 0.6698 | 0.0 | 0.6692 | 0.6692 |
| 0.0214 | 4 | 456 | 0.6234 | 0.0625 | 4.2255 | 0.6857 | 0.4811 | 0.6857 | 0.0 | 0.6857 | 0.6857 |
| 0.0214 | 5 | 570 | 0.6549 | 0.125 | 5.2374 | 0.6686 | 0.4219 | 0.6692 | 0.0 | 0.6683 | 0.6686 |
| 0.0214 | 6 | 684 | 0.6680 | 0.25 | 6.1767 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| 0.1567 | 7 | 798 | 0.6387 | 0.5 | 8.7699 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
| 0.6544 | 8.0 | 912 | 0.6438 | 1.0 | 14.6836 | 0.6651 | 0.3994 | 0.6657 | 0.0 | 0.6645 | 0.6651 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 12