4be5da4a13273b95662f7a02b0747bee

This model is a fine-tuned version of studio-ousia/mluke-base on the dair-ai/emotion [split] dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2213
  • Data Size: 1.0
  • Epoch Runtime: 48.6894
  • Accuracy: 0.9304
  • F1 Macro: 0.8766

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro
No log 0 0 1.8219 0 2.4193 0.0993 0.0601
No log 1 500 1.5722 0.0078 3.1785 0.3589 0.1389
No log 2 1000 1.5065 0.0156 4.0965 0.3503 0.0882
No log 3 1500 1.5120 0.0312 5.9046 0.4612 0.1780
No log 4 2000 1.1079 0.0625 7.0501 0.5842 0.2456
0.0678 5 2500 0.6385 0.125 9.8105 0.7828 0.6156
0.3896 6 3000 0.3752 0.25 15.5161 0.8695 0.8157
0.0379 7 3500 0.2447 0.5 26.9726 0.9138 0.8684
0.1801 8.0 4000 0.1651 1.0 49.3466 0.9289 0.8881
0.1285 9.0 4500 0.1754 1.0 49.2456 0.9254 0.8746
0.1204 10.0 5000 0.1674 1.0 48.8140 0.9340 0.8948
0.0959 11.0 5500 0.1805 1.0 46.6978 0.9259 0.8884
0.0903 12.0 6000 0.2213 1.0 48.6894 0.9304 0.8766

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
7
Safetensors
Model size
0.6B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/4be5da4a13273b95662f7a02b0747bee

Finetuned
(26)
this model