5fba14bef314c141ceb64291316c7c17
This model is a fine-tuned version of google-bert/bert-large-cased-whole-word-masking on the google/boolq dataset. It achieves the following results on the evaluation set:
- Loss: 0.6706
- Data Size: 0.125
- Epoch Runtime: 7.4296
- Accuracy: 0.6213
- F1 Macro: 0.3832
- Rouge1: 0.6213
- Rouge2: 0.0
- Rougel: 0.6207
- Rougelsum: 0.6210
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.7050 | 0 | 3.0130 | 0.5162 | 0.5015 | 0.5159 | 0.0 | 0.5165 | 0.5162 |
| No log | 1 | 294 | 0.6627 | 0.0078 | 3.7635 | 0.6198 | 0.3849 | 0.6198 | 0.0 | 0.6192 | 0.6198 |
| No log | 2 | 588 | 0.6640 | 0.0156 | 3.7631 | 0.6213 | 0.3832 | 0.6213 | 0.0 | 0.6207 | 0.6210 |
| No log | 3 | 882 | 0.6774 | 0.0312 | 5.1133 | 0.6081 | 0.4462 | 0.6078 | 0.0 | 0.6078 | 0.6085 |
| 0.0277 | 4 | 1176 | 0.6638 | 0.0625 | 5.9470 | 0.6186 | 0.3925 | 0.6186 | 0.0 | 0.6180 | 0.6183 |
| 0.0573 | 5 | 1470 | 0.6706 | 0.125 | 7.4296 | 0.6213 | 0.3832 | 0.6213 | 0.0 | 0.6207 | 0.6210 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 18