5fba14bef314c141ceb64291316c7c17

This model is a fine-tuned version of google-bert/bert-large-cased-whole-word-masking on the google/boolq dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6706
  • Data Size: 0.125
  • Epoch Runtime: 7.4296
  • Accuracy: 0.6213
  • F1 Macro: 0.3832
  • Rouge1: 0.6213
  • Rouge2: 0.0
  • Rougel: 0.6207
  • Rougelsum: 0.6210

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 0.7050 0 3.0130 0.5162 0.5015 0.5159 0.0 0.5165 0.5162
No log 1 294 0.6627 0.0078 3.7635 0.6198 0.3849 0.6198 0.0 0.6192 0.6198
No log 2 588 0.6640 0.0156 3.7631 0.6213 0.3832 0.6213 0.0 0.6207 0.6210
No log 3 882 0.6774 0.0312 5.1133 0.6081 0.4462 0.6078 0.0 0.6078 0.6085
0.0277 4 1176 0.6638 0.0625 5.9470 0.6186 0.3925 0.6186 0.0 0.6180 0.6183
0.0573 5 1470 0.6706 0.125 7.4296 0.6213 0.3832 0.6213 0.0 0.6207 0.6210

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
18
Safetensors
Model size
0.3B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/5fba14bef314c141ceb64291316c7c17

Finetuned
(22)
this model