contemmcm's picture
End of training
30191f3 verified
metadata
library_name: transformers
license: apache-2.0
base_model: studio-ousia/luke-japanese-base-lite
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - rouge
model-index:
  - name: adf30ff46484ae174f499deadd84ad2a
    results: []

adf30ff46484ae174f499deadd84ad2a

This model is a fine-tuned version of studio-ousia/luke-japanese-base-lite on the nyu-mll/glue [cola] dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6206
  • Data Size: 1.0
  • Epoch Runtime: 24.4961
  • Accuracy: 0.6885
  • F1 Macro: 0.4078
  • Rouge1: 0.6895
  • Rouge2: 0.0
  • Rougel: 0.6885
  • Rougelsum: 0.6885

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 0.8334 0 1.3810 0.3115 0.2375 0.3105 0.0 0.3115 0.3115
No log 1 267 0.6707 0.0078 2.0702 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
No log 2 534 0.6679 0.0156 2.0008 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
No log 3 801 0.6399 0.0312 2.5999 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
No log 4 1068 0.6386 0.0625 3.3997 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
0.037 5 1335 0.6324 0.125 4.9205 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
0.61 6 1602 0.6276 0.25 7.8792 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
0.6173 7 1869 0.6444 0.5 13.9109 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
0.6024 8.0 2136 0.6224 1.0 25.6404 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
0.6082 9.0 2403 0.6433 1.0 24.8289 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
0.6145 10.0 2670 0.6193 1.0 25.1369 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
0.6197 11.0 2937 0.6214 1.0 24.2461 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
0.6238 12.0 3204 0.6214 1.0 24.3247 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
0.6128 13.0 3471 0.6220 1.0 24.5419 0.6885 0.4078 0.6895 0.0 0.6885 0.6885
0.6246 14.0 3738 0.6206 1.0 24.4961 0.6885 0.4078 0.6895 0.0 0.6885 0.6885

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1