cc522f2f2219b6467260677999c26a6b

This model is a fine-tuned version of FacebookAI/roberta-large on the nyu-mll/glue [qqp] dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8585
  • Data Size: 0.25
  • Epoch Runtime: 445.1982
  • Accuracy: 0.3680
  • F1 Macro: 0.2690
  • Rouge1: 0.3682
  • Rouge2: 0.0
  • Rougel: 0.3681
  • Rougelsum: 0.3683

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 0.6540 0 52.7420 0.6320 0.3872 0.6318 0.0 0.6319 0.6317
0.6451 1 11370 0.5819 0.0078 66.7814 0.7987 0.7821 0.7988 0.0 0.7987 0.7987
0.5842 2 22740 0.5633 0.0156 78.9004 0.7674 0.7504 0.7674 0.0 0.7674 0.7673
0.6603 3 34110 0.6254 0.0312 103.6159 0.6527 0.6307 0.6527 0.0 0.6527 0.6526
0.6767 4 45480 0.6581 0.0625 151.4573 0.6320 0.3872 0.6318 0.0 0.6319 0.6317
0.6693 5 56850 0.6608 0.125 250.6893 0.6320 0.3872 0.6318 0.0 0.6319 0.6317
0.6585 6 68220 0.8585 0.25 445.1982 0.3680 0.2690 0.3682 0.0 0.3681 0.3683

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
1
Safetensors
Model size
0.4B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/cc522f2f2219b6467260677999c26a6b

Finetuned
(426)
this model