Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
image
imagewidth (px)
256
512
End of preview. Expand in Data Studio

Neural 3D Video Dataset - Processed

This directory contains preprocessed multi-view video data from the Neural 3D Video dataset, converted into a format suitable for 4D reconstruction and novel view synthesis tasks.

Dataset Overview

Source Dataset: Neural 3D Video
License: CC-BY-4.0
Processed Scenes: 5 dynamic cooking scenes captured from multiple camera angles

Scenes

Scene Description Cameras Frames
coffee_martini Making a coffee martini cocktail 18 32
cook_spinach Cooking spinach in a pan 18 32
cut_roasted_beef Cutting roasted beef 18 32
flame_salmon_1 FlambΓ© salmon preparation 18 32
sear_steak Searing steak in a pan 18 32

Directory Structure

Neural-3D-Video-Dataset/
β”œβ”€β”€ README.md (this file)
β”œβ”€β”€ coffee_martini_processed/
β”‚   β”œβ”€β”€ 256/                          # 256Γ—256 resolution
β”‚   β”‚   β”œβ”€β”€ images/                   # 32 frame images
β”‚   β”‚   β”‚   β”œβ”€β”€ sample_000_cam00.jpg
β”‚   β”‚   β”‚   β”œβ”€β”€ sample_001_cam01.jpg
β”‚   β”‚   β”‚   └── ...
β”‚   β”‚   β”œβ”€β”€ transforms.json           # Camera poses (JSON format)
β”‚   β”‚   β”œβ”€β”€ transforms.npz            # Camera poses (NumPy format)
β”‚   β”‚   └── camera_visualization.html # Interactive 3D camera viewer
β”‚   └── 512/                          # 512Γ—512 resolution
β”‚       β”œβ”€β”€ images/
β”‚       β”œβ”€β”€ transforms.json
β”‚       β”œβ”€β”€ transforms.npz
β”‚       └── camera_visualization.html
β”œβ”€β”€ cook_spinach_processed/
β”‚   β”œβ”€β”€ 256/ ...
β”‚   └── 512/ ...
β”œβ”€β”€ cut_roasted_beef_processed/
β”‚   β”œβ”€β”€ 256/ ...
β”‚   └── 512/ ...
β”œβ”€β”€ flame_salmon_1_processed/
β”‚   β”œβ”€β”€ 256/ ...
β”‚   └── 512/ ...
└── sear_steak_processed/
    β”œβ”€β”€ 256/ ...
    └── 512/ ...

Data Format

Camera Poses (transforms.json)

The camera poses are stored in a JSON file with the following structure:

{
    "frames": [
        {
            "front": {
                "timestamp": 0,
                "file_path": "./images/sample_000_cam00.jpg",
                "w": 256,
                "h": 256,
                "fx": 341.33,
                "fy": 341.33,
                "cx": 128.0,
                "cy": 128.0,
                "w2c": [[...], [...], [...], [...]],     // 4Γ—4 world-to-camera matrix
                "c2w": [[...], [...], [...]],             // 3Γ—4 camera-to-world matrix
                "blender_camera_location": [x, y, z]     // Camera position in world coordinates
            }
        },
        ...
    ]
}

Intrinsics (camera internal parameters):

  • 256Γ—256: fx = fy = 341.33, cx = cy = 128.0
  • 512Γ—512: fx = fy = 682.67, cx = cy = 256.0

Extrinsics (camera external parameters):

  • w2c: 4Γ—4 world-to-camera transformation matrix
  • c2w: 3Γ—4 camera-to-world transformation matrix (rotation + translation)
  • blender_camera_location: 3D camera position [x, y, z] in world coordinates

NumPy Format (transforms.npz)

For convenience, camera parameters are also provided in NumPy format:

import numpy as np

data = np.load('transforms.npz')
intrinsics = data['intrinsics']          # (32, 3, 3) - intrinsic matrices
extrinsics_w2c = data['extrinsics_w2c']  # (32, 4, 4) - world-to-camera
extrinsics_c2w = data['extrinsics_c2w']  # (32, 4, 4) - camera-to-world
camera_positions = data['camera_positions']  # (32, 3) - camera locations

Frame Images

  • Format: JPEG
  • Resolutions: 256Γ—256 and 512Γ—512
  • Count: 32 frames per scene
  • Naming: sample_{frame:03d}_cam{camera:02d}.jpg

Each frame is extracted from a different camera view:

  • Frame 0 β†’ cam00
  • Frame 1 β†’ cam01
  • ...
  • Frame 17 β†’ cam20
  • Frame 18 β†’ cam00 (loops back)
  • ...
  • Frame 31 β†’ cam14

Data Processing

Original Data

  • Source resolution: 2704Γ—2028 (4:3 aspect ratio)
  • Original format: Multi-view MP4 videos
  • Camera model: LLFF format with poses_bounds.npy

Processing Pipeline

  1. Center Crop: 2704Γ—2028 β†’ 2028Γ—2028 (square)
  2. Resize: 2028Γ—2028 β†’ 256Γ—256 or 512Γ—512
  3. Intrinsics Adjustment: Focal length and principal point adjusted for crop and resize
  4. Extrinsics Extraction: Camera poses extracted from LLFF format
  5. Format Conversion: Converted to standard c2w/w2c matrices

Frame Sampling Strategy

To capture the dynamic motion from multiple viewpoints, frames are sampled such that each frame shows the scene from a different camera angle in sequence. This creates a "synchronized" multi-view video where:

  • The temporal progression shows the dynamic action
  • Each frame provides a different spatial viewpoint
  • Camera angles loop after exhausting all 18 cameras

Camera Visualization

Each processed scene includes an interactive 3D camera visualization (camera_visualization.html):

  • View camera positions and orientations in 3D space
  • Interactive: Rotate, pan, and zoom to explore the camera rig
  • Camera frustums: Visualize the viewing direction and field of view
  • Trajectory path: See the sequence of frames and camera transitions
  • Powered by Plotly: High-quality interactive graphics

Open the HTML file in any web browser to explore the camera setup.

Usage Examples

Loading Camera Poses (Python)

import json
import numpy as np

# Load from JSON
with open('coffee_martini_processed/256/transforms.json', 'r') as f:
    data = json.load(f)
    
# Access first frame
frame0 = data['frames'][0]['front']
print(f"Camera intrinsics: fx={frame0['fx']}, fy={frame0['fy']}")
print(f"Camera position: {frame0['blender_camera_location']}")
print(f"Image path: {frame0['file_path']}")

# Load from NumPy
poses = np.load('coffee_martini_processed/256/transforms.npz')
intrinsics = poses['intrinsics']  # (32, 3, 3)
c2w = poses['extrinsics_c2w']     # (32, 4, 4)

Loading Images

import cv2
import os

scene_dir = 'coffee_martini_processed/256'
img_dir = os.path.join(scene_dir, 'images')

# Load all frames
frames = []
for i in range(32):
    img_path = os.path.join(img_dir, f'sample_{i:03d}_cam*.jpg')
    # Find the actual file (camera number may vary)
    import glob
    img_file = glob.glob(img_path)[0]
    img = cv2.imread(img_file)
    frames.append(img)

print(f"Loaded {len(frames)} frames, shape: {frames[0].shape}")

PyTorch Dataset Example

import torch
from torch.utils.data import Dataset
from PIL import Image
import json
import numpy as np

class Neural3DVideoDataset(Dataset):
    def __init__(self, scene_dir):
        self.scene_dir = scene_dir
        
        # Load transforms
        with open(os.path.join(scene_dir, 'transforms.json'), 'r') as f:
            self.data = json.load(f)
        
        self.frames = self.data['frames']
    
    def __len__(self):
        return len(self.frames)
    
    def __getitem__(self, idx):
        frame_data = self.frames[idx]['front']
        
        # Load image
        img_path = os.path.join(self.scene_dir, frame_data['file_path'])
        img = Image.open(img_path).convert('RGB')
        img = torch.from_numpy(np.array(img)).float() / 255.0
        
        # Get camera parameters
        intrinsics = torch.tensor([
            [frame_data['fx'], 0, frame_data['cx']],
            [0, frame_data['fy'], frame_data['cy']],
            [0, 0, 1]
        ], dtype=torch.float32)
        
        c2w = torch.tensor(frame_data['c2w'], dtype=torch.float32)
        
        return {
            'image': img,
            'intrinsics': intrinsics,
            'c2w': c2w,
            'timestamp': frame_data['timestamp']
        }

# Usage
dataset = Neural3DVideoDataset('coffee_martini_processed/256')
sample = dataset[0]
print(f"Image shape: {sample['image'].shape}")
print(f"Camera position: {sample['c2w'][:, 3]}")

Technical Details

Camera Configuration

  • Number of cameras: 18 per scene
  • Camera arrangement: Surrounding the scene in a roughly circular pattern
  • Frame rate: 30 FPS (original videos)
  • Camera model: Pinhole camera with radial distortion (pre-undistorted)

Coordinate System

  • World coordinates: Right-handed coordinate system
  • Camera coordinates:
    • X-axis: Right
    • Y-axis: Down
    • Z-axis: Forward (viewing direction)
  • c2w matrix: Transforms from camera space to world space
  • w2c matrix: Transforms from world space to camera space

Quality Settings

  • JPEG quality: 95
  • Interpolation: Bilinear (cv2.INTER_LINEAR)
  • Color space: RGB (8-bit per channel)

Citation

If you use this dataset in your research, please cite the original Neural 3D Video dataset:

@article{neural3dvideo2021,
  title={Neural 3D Video Synthesis},
  author={Author Names},
  journal={Conference/Journal Name},
  year={2021}
}

Processing Scripts

The data was processed using custom scripts available in the parent directory:

  • create_sync_video_with_poses.py - Single scene processing
  • batch_process_scenes.py - Batch processing for all scenes

License

This processed dataset inherits the CC-BY-4.0 license from the original Neural 3D Video dataset. Please respect the license terms when using this data.

Contact

For questions or issues regarding this processed dataset, please contact the dataset maintainer.

Downloads last month
243