Datasets:
Dataset Viewer
image
imagewidth (px) 1.02k
1.02k
| label
imagewidth (px) 1.02k
1.02k
| image_id
stringlengths 26
26
| file_name
stringlengths 30
30
| case_id
stringclasses 50
values | slice_id
int32 0
112
| split
stringclasses 1
value |
|---|---|---|---|---|---|---|
CT_Abd_FLARE22_Tr_0001-000
|
CT_Abd_FLARE22_Tr_0001-000.npy
|
FLARE22_Tr_0001
| 0 |
train
|
||
CT_Abd_FLARE22_Tr_0001-001
|
CT_Abd_FLARE22_Tr_0001-001.npy
|
FLARE22_Tr_0001
| 1 |
train
|
||
CT_Abd_FLARE22_Tr_0001-002
|
CT_Abd_FLARE22_Tr_0001-002.npy
|
FLARE22_Tr_0001
| 2 |
train
|
||
CT_Abd_FLARE22_Tr_0001-003
|
CT_Abd_FLARE22_Tr_0001-003.npy
|
FLARE22_Tr_0001
| 3 |
train
|
||
CT_Abd_FLARE22_Tr_0001-004
|
CT_Abd_FLARE22_Tr_0001-004.npy
|
FLARE22_Tr_0001
| 4 |
train
|
||
CT_Abd_FLARE22_Tr_0001-005
|
CT_Abd_FLARE22_Tr_0001-005.npy
|
FLARE22_Tr_0001
| 5 |
train
|
||
CT_Abd_FLARE22_Tr_0001-006
|
CT_Abd_FLARE22_Tr_0001-006.npy
|
FLARE22_Tr_0001
| 6 |
train
|
||
CT_Abd_FLARE22_Tr_0001-007
|
CT_Abd_FLARE22_Tr_0001-007.npy
|
FLARE22_Tr_0001
| 7 |
train
|
||
CT_Abd_FLARE22_Tr_0001-008
|
CT_Abd_FLARE22_Tr_0001-008.npy
|
FLARE22_Tr_0001
| 8 |
train
|
||
CT_Abd_FLARE22_Tr_0001-009
|
CT_Abd_FLARE22_Tr_0001-009.npy
|
FLARE22_Tr_0001
| 9 |
train
|
||
CT_Abd_FLARE22_Tr_0001-010
|
CT_Abd_FLARE22_Tr_0001-010.npy
|
FLARE22_Tr_0001
| 10 |
train
|
||
CT_Abd_FLARE22_Tr_0001-011
|
CT_Abd_FLARE22_Tr_0001-011.npy
|
FLARE22_Tr_0001
| 11 |
train
|
||
CT_Abd_FLARE22_Tr_0001-012
|
CT_Abd_FLARE22_Tr_0001-012.npy
|
FLARE22_Tr_0001
| 12 |
train
|
||
CT_Abd_FLARE22_Tr_0001-013
|
CT_Abd_FLARE22_Tr_0001-013.npy
|
FLARE22_Tr_0001
| 13 |
train
|
||
CT_Abd_FLARE22_Tr_0001-014
|
CT_Abd_FLARE22_Tr_0001-014.npy
|
FLARE22_Tr_0001
| 14 |
train
|
||
CT_Abd_FLARE22_Tr_0001-015
|
CT_Abd_FLARE22_Tr_0001-015.npy
|
FLARE22_Tr_0001
| 15 |
train
|
||
CT_Abd_FLARE22_Tr_0001-016
|
CT_Abd_FLARE22_Tr_0001-016.npy
|
FLARE22_Tr_0001
| 16 |
train
|
||
CT_Abd_FLARE22_Tr_0001-017
|
CT_Abd_FLARE22_Tr_0001-017.npy
|
FLARE22_Tr_0001
| 17 |
train
|
||
CT_Abd_FLARE22_Tr_0001-018
|
CT_Abd_FLARE22_Tr_0001-018.npy
|
FLARE22_Tr_0001
| 18 |
train
|
||
CT_Abd_FLARE22_Tr_0001-019
|
CT_Abd_FLARE22_Tr_0001-019.npy
|
FLARE22_Tr_0001
| 19 |
train
|
||
CT_Abd_FLARE22_Tr_0001-020
|
CT_Abd_FLARE22_Tr_0001-020.npy
|
FLARE22_Tr_0001
| 20 |
train
|
||
CT_Abd_FLARE22_Tr_0001-021
|
CT_Abd_FLARE22_Tr_0001-021.npy
|
FLARE22_Tr_0001
| 21 |
train
|
||
CT_Abd_FLARE22_Tr_0001-022
|
CT_Abd_FLARE22_Tr_0001-022.npy
|
FLARE22_Tr_0001
| 22 |
train
|
||
CT_Abd_FLARE22_Tr_0001-023
|
CT_Abd_FLARE22_Tr_0001-023.npy
|
FLARE22_Tr_0001
| 23 |
train
|
||
CT_Abd_FLARE22_Tr_0001-024
|
CT_Abd_FLARE22_Tr_0001-024.npy
|
FLARE22_Tr_0001
| 24 |
train
|
||
CT_Abd_FLARE22_Tr_0001-025
|
CT_Abd_FLARE22_Tr_0001-025.npy
|
FLARE22_Tr_0001
| 25 |
train
|
||
CT_Abd_FLARE22_Tr_0001-026
|
CT_Abd_FLARE22_Tr_0001-026.npy
|
FLARE22_Tr_0001
| 26 |
train
|
||
CT_Abd_FLARE22_Tr_0001-027
|
CT_Abd_FLARE22_Tr_0001-027.npy
|
FLARE22_Tr_0001
| 27 |
train
|
||
CT_Abd_FLARE22_Tr_0001-028
|
CT_Abd_FLARE22_Tr_0001-028.npy
|
FLARE22_Tr_0001
| 28 |
train
|
||
CT_Abd_FLARE22_Tr_0001-029
|
CT_Abd_FLARE22_Tr_0001-029.npy
|
FLARE22_Tr_0001
| 29 |
train
|
||
CT_Abd_FLARE22_Tr_0001-030
|
CT_Abd_FLARE22_Tr_0001-030.npy
|
FLARE22_Tr_0001
| 30 |
train
|
||
CT_Abd_FLARE22_Tr_0001-031
|
CT_Abd_FLARE22_Tr_0001-031.npy
|
FLARE22_Tr_0001
| 31 |
train
|
||
CT_Abd_FLARE22_Tr_0001-032
|
CT_Abd_FLARE22_Tr_0001-032.npy
|
FLARE22_Tr_0001
| 32 |
train
|
||
CT_Abd_FLARE22_Tr_0001-033
|
CT_Abd_FLARE22_Tr_0001-033.npy
|
FLARE22_Tr_0001
| 33 |
train
|
||
CT_Abd_FLARE22_Tr_0001-034
|
CT_Abd_FLARE22_Tr_0001-034.npy
|
FLARE22_Tr_0001
| 34 |
train
|
||
CT_Abd_FLARE22_Tr_0001-035
|
CT_Abd_FLARE22_Tr_0001-035.npy
|
FLARE22_Tr_0001
| 35 |
train
|
||
CT_Abd_FLARE22_Tr_0001-036
|
CT_Abd_FLARE22_Tr_0001-036.npy
|
FLARE22_Tr_0001
| 36 |
train
|
||
CT_Abd_FLARE22_Tr_0001-037
|
CT_Abd_FLARE22_Tr_0001-037.npy
|
FLARE22_Tr_0001
| 37 |
train
|
||
CT_Abd_FLARE22_Tr_0001-038
|
CT_Abd_FLARE22_Tr_0001-038.npy
|
FLARE22_Tr_0001
| 38 |
train
|
||
CT_Abd_FLARE22_Tr_0001-039
|
CT_Abd_FLARE22_Tr_0001-039.npy
|
FLARE22_Tr_0001
| 39 |
train
|
||
CT_Abd_FLARE22_Tr_0001-040
|
CT_Abd_FLARE22_Tr_0001-040.npy
|
FLARE22_Tr_0001
| 40 |
train
|
||
CT_Abd_FLARE22_Tr_0001-041
|
CT_Abd_FLARE22_Tr_0001-041.npy
|
FLARE22_Tr_0001
| 41 |
train
|
||
CT_Abd_FLARE22_Tr_0001-042
|
CT_Abd_FLARE22_Tr_0001-042.npy
|
FLARE22_Tr_0001
| 42 |
train
|
||
CT_Abd_FLARE22_Tr_0001-043
|
CT_Abd_FLARE22_Tr_0001-043.npy
|
FLARE22_Tr_0001
| 43 |
train
|
||
CT_Abd_FLARE22_Tr_0001-044
|
CT_Abd_FLARE22_Tr_0001-044.npy
|
FLARE22_Tr_0001
| 44 |
train
|
||
CT_Abd_FLARE22_Tr_0001-045
|
CT_Abd_FLARE22_Tr_0001-045.npy
|
FLARE22_Tr_0001
| 45 |
train
|
||
CT_Abd_FLARE22_Tr_0001-046
|
CT_Abd_FLARE22_Tr_0001-046.npy
|
FLARE22_Tr_0001
| 46 |
train
|
||
CT_Abd_FLARE22_Tr_0001-047
|
CT_Abd_FLARE22_Tr_0001-047.npy
|
FLARE22_Tr_0001
| 47 |
train
|
||
CT_Abd_FLARE22_Tr_0001-048
|
CT_Abd_FLARE22_Tr_0001-048.npy
|
FLARE22_Tr_0001
| 48 |
train
|
||
CT_Abd_FLARE22_Tr_0001-049
|
CT_Abd_FLARE22_Tr_0001-049.npy
|
FLARE22_Tr_0001
| 49 |
train
|
||
CT_Abd_FLARE22_Tr_0001-050
|
CT_Abd_FLARE22_Tr_0001-050.npy
|
FLARE22_Tr_0001
| 50 |
train
|
||
CT_Abd_FLARE22_Tr_0001-051
|
CT_Abd_FLARE22_Tr_0001-051.npy
|
FLARE22_Tr_0001
| 51 |
train
|
||
CT_Abd_FLARE22_Tr_0001-052
|
CT_Abd_FLARE22_Tr_0001-052.npy
|
FLARE22_Tr_0001
| 52 |
train
|
||
CT_Abd_FLARE22_Tr_0001-053
|
CT_Abd_FLARE22_Tr_0001-053.npy
|
FLARE22_Tr_0001
| 53 |
train
|
||
CT_Abd_FLARE22_Tr_0001-054
|
CT_Abd_FLARE22_Tr_0001-054.npy
|
FLARE22_Tr_0001
| 54 |
train
|
||
CT_Abd_FLARE22_Tr_0001-055
|
CT_Abd_FLARE22_Tr_0001-055.npy
|
FLARE22_Tr_0001
| 55 |
train
|
||
CT_Abd_FLARE22_Tr_0001-056
|
CT_Abd_FLARE22_Tr_0001-056.npy
|
FLARE22_Tr_0001
| 56 |
train
|
||
CT_Abd_FLARE22_Tr_0001-057
|
CT_Abd_FLARE22_Tr_0001-057.npy
|
FLARE22_Tr_0001
| 57 |
train
|
||
CT_Abd_FLARE22_Tr_0001-058
|
CT_Abd_FLARE22_Tr_0001-058.npy
|
FLARE22_Tr_0001
| 58 |
train
|
||
CT_Abd_FLARE22_Tr_0001-059
|
CT_Abd_FLARE22_Tr_0001-059.npy
|
FLARE22_Tr_0001
| 59 |
train
|
||
CT_Abd_FLARE22_Tr_0001-060
|
CT_Abd_FLARE22_Tr_0001-060.npy
|
FLARE22_Tr_0001
| 60 |
train
|
||
CT_Abd_FLARE22_Tr_0001-061
|
CT_Abd_FLARE22_Tr_0001-061.npy
|
FLARE22_Tr_0001
| 61 |
train
|
||
CT_Abd_FLARE22_Tr_0001-062
|
CT_Abd_FLARE22_Tr_0001-062.npy
|
FLARE22_Tr_0001
| 62 |
train
|
||
CT_Abd_FLARE22_Tr_0001-063
|
CT_Abd_FLARE22_Tr_0001-063.npy
|
FLARE22_Tr_0001
| 63 |
train
|
||
CT_Abd_FLARE22_Tr_0001-064
|
CT_Abd_FLARE22_Tr_0001-064.npy
|
FLARE22_Tr_0001
| 64 |
train
|
||
CT_Abd_FLARE22_Tr_0001-065
|
CT_Abd_FLARE22_Tr_0001-065.npy
|
FLARE22_Tr_0001
| 65 |
train
|
||
CT_Abd_FLARE22_Tr_0001-066
|
CT_Abd_FLARE22_Tr_0001-066.npy
|
FLARE22_Tr_0001
| 66 |
train
|
||
CT_Abd_FLARE22_Tr_0001-067
|
CT_Abd_FLARE22_Tr_0001-067.npy
|
FLARE22_Tr_0001
| 67 |
train
|
||
CT_Abd_FLARE22_Tr_0001-068
|
CT_Abd_FLARE22_Tr_0001-068.npy
|
FLARE22_Tr_0001
| 68 |
train
|
||
CT_Abd_FLARE22_Tr_0001-069
|
CT_Abd_FLARE22_Tr_0001-069.npy
|
FLARE22_Tr_0001
| 69 |
train
|
||
CT_Abd_FLARE22_Tr_0001-070
|
CT_Abd_FLARE22_Tr_0001-070.npy
|
FLARE22_Tr_0001
| 70 |
train
|
||
CT_Abd_FLARE22_Tr_0001-071
|
CT_Abd_FLARE22_Tr_0001-071.npy
|
FLARE22_Tr_0001
| 71 |
train
|
||
CT_Abd_FLARE22_Tr_0001-072
|
CT_Abd_FLARE22_Tr_0001-072.npy
|
FLARE22_Tr_0001
| 72 |
train
|
||
CT_Abd_FLARE22_Tr_0001-073
|
CT_Abd_FLARE22_Tr_0001-073.npy
|
FLARE22_Tr_0001
| 73 |
train
|
||
CT_Abd_FLARE22_Tr_0001-074
|
CT_Abd_FLARE22_Tr_0001-074.npy
|
FLARE22_Tr_0001
| 74 |
train
|
||
CT_Abd_FLARE22_Tr_0001-075
|
CT_Abd_FLARE22_Tr_0001-075.npy
|
FLARE22_Tr_0001
| 75 |
train
|
||
CT_Abd_FLARE22_Tr_0001-076
|
CT_Abd_FLARE22_Tr_0001-076.npy
|
FLARE22_Tr_0001
| 76 |
train
|
||
CT_Abd_FLARE22_Tr_0001-077
|
CT_Abd_FLARE22_Tr_0001-077.npy
|
FLARE22_Tr_0001
| 77 |
train
|
||
CT_Abd_FLARE22_Tr_0001-078
|
CT_Abd_FLARE22_Tr_0001-078.npy
|
FLARE22_Tr_0001
| 78 |
train
|
||
CT_Abd_FLARE22_Tr_0001-079
|
CT_Abd_FLARE22_Tr_0001-079.npy
|
FLARE22_Tr_0001
| 79 |
train
|
||
CT_Abd_FLARE22_Tr_0001-080
|
CT_Abd_FLARE22_Tr_0001-080.npy
|
FLARE22_Tr_0001
| 80 |
train
|
||
CT_Abd_FLARE22_Tr_0001-081
|
CT_Abd_FLARE22_Tr_0001-081.npy
|
FLARE22_Tr_0001
| 81 |
train
|
||
CT_Abd_FLARE22_Tr_0001-082
|
CT_Abd_FLARE22_Tr_0001-082.npy
|
FLARE22_Tr_0001
| 82 |
train
|
||
CT_Abd_FLARE22_Tr_0001-083
|
CT_Abd_FLARE22_Tr_0001-083.npy
|
FLARE22_Tr_0001
| 83 |
train
|
||
CT_Abd_FLARE22_Tr_0001-084
|
CT_Abd_FLARE22_Tr_0001-084.npy
|
FLARE22_Tr_0001
| 84 |
train
|
||
CT_Abd_FLARE22_Tr_0001-085
|
CT_Abd_FLARE22_Tr_0001-085.npy
|
FLARE22_Tr_0001
| 85 |
train
|
||
CT_Abd_FLARE22_Tr_0001-086
|
CT_Abd_FLARE22_Tr_0001-086.npy
|
FLARE22_Tr_0001
| 86 |
train
|
||
CT_Abd_FLARE22_Tr_0001-087
|
CT_Abd_FLARE22_Tr_0001-087.npy
|
FLARE22_Tr_0001
| 87 |
train
|
||
CT_Abd_FLARE22_Tr_0001-088
|
CT_Abd_FLARE22_Tr_0001-088.npy
|
FLARE22_Tr_0001
| 88 |
train
|
||
CT_Abd_FLARE22_Tr_0001-089
|
CT_Abd_FLARE22_Tr_0001-089.npy
|
FLARE22_Tr_0001
| 89 |
train
|
||
CT_Abd_FLARE22_Tr_0001-090
|
CT_Abd_FLARE22_Tr_0001-090.npy
|
FLARE22_Tr_0001
| 90 |
train
|
||
CT_Abd_FLARE22_Tr_0001-091
|
CT_Abd_FLARE22_Tr_0001-091.npy
|
FLARE22_Tr_0001
| 91 |
train
|
||
CT_Abd_FLARE22_Tr_0001-092
|
CT_Abd_FLARE22_Tr_0001-092.npy
|
FLARE22_Tr_0001
| 92 |
train
|
||
CT_Abd_FLARE22_Tr_0001-093
|
CT_Abd_FLARE22_Tr_0001-093.npy
|
FLARE22_Tr_0001
| 93 |
train
|
||
CT_Abd_FLARE22_Tr_0001-094
|
CT_Abd_FLARE22_Tr_0001-094.npy
|
FLARE22_Tr_0001
| 94 |
train
|
||
CT_Abd_FLARE22_Tr_0001-095
|
CT_Abd_FLARE22_Tr_0001-095.npy
|
FLARE22_Tr_0001
| 95 |
train
|
||
CT_Abd_FLARE22_Tr_0001-096
|
CT_Abd_FLARE22_Tr_0001-096.npy
|
FLARE22_Tr_0001
| 96 |
train
|
||
CT_Abd_FLARE22_Tr_0001-097
|
CT_Abd_FLARE22_Tr_0001-097.npy
|
FLARE22_Tr_0001
| 97 |
train
|
||
CT_Abd_FLARE22_Tr_0001-098
|
CT_Abd_FLARE22_Tr_0001-098.npy
|
FLARE22_Tr_0001
| 98 |
train
|
||
CT_Abd_FLARE22_Tr_0001-099
|
CT_Abd_FLARE22_Tr_0001-099.npy
|
FLARE22_Tr_0001
| 99 |
train
|
End of preview. Expand
in Data Studio
YAML Metadata
Warning:
The task_categories "medical" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other
FLARE22 CT Abdominal Organ Segmentation Dataset (Preprocessed)
Dataset Description
This is a preprocessed version of the FLARE22 (Fast and Low-resource semi-supervised Abdominal oRgan sEgmentation) dataset, optimized for SAM/SAM2 evaluation.
- Original Dataset: FLARE22 on Zenodo
- Preprocessing: CT windowing, resizing to 1024x1024, multi-organ masks
- Format: RGB images (PNG) + grayscale masks with organ class IDs
Dataset Statistics
- Splits: train
- Total Samples: 4543 CT slices
- Image Size: 1024 x 1024 pixels
- Organs: 13 classes (liver, kidneys, spleen, pancreas, aorta, etc.)
Organ Classes
| Class ID | Organ Name (English) | Organ Name (ไธญๆ) |
|---|---|---|
| 0 | Background | ่ๆฏ |
| 1 | Liver | ่่ |
| 2 | Right Kidney | ๅณ่พ |
| 3 | Spleen | ่พ่ |
| 4 | Pancreas | ่ฐ่ บ |
| 5 | Aorta | ไธปๅจ่ |
| 6 | Inferior Vena Cava | ไธ่ ้่ |
| 7 | Right Adrenal Gland | ๅณ่พไธ่ บ |
| 8 | Left Adrenal Gland | ๅทฆ่พไธ่ บ |
| 9 | Gallbladder | ่ๅ |
| 10 | Esophagus | ้ฃ็ฎก |
| 11 | Stomach | ่ |
| 13 | Left Kidney | ๅทฆ่พ |
Note: Class 12 (Duodenum/ๅไบๆ่ ) is removed by default due to scattered distribution.
Usage
Load with ๐ค Datasets
from datasets import load_dataset
# Load dataset
dataset = load_dataset("Angelou0516/FLARE22-CT-Abd", split="val")
# Access sample
sample = dataset[0]
image = sample['image'] # PIL Image (RGB)
mask = sample['label'] # PIL Image (grayscale with class IDs)
case_id = sample['case_id']
Use with EasyMedSeg
from dataloader.image.flare22_dataset import FLARE22Dataset
# Will automatically download from HuggingFace
dataset = FLARE22Dataset(
mode='download',
split='val',
hf_repo_id='Angelou0516/FLARE22-CT-Abd'
)
sample = dataset[0]
image = sample['image'] # PIL Image
mask = sample['mask'] # numpy array
Evaluation with SAM/SAM2
# Clone EasyMedSeg
git clone https://github.com/your-org/EasyMedSeg.git
cd EasyMedSeg
# Install dependencies
pip install -r requirements.txt
# Run evaluation
python scripts/evaluation.py --config configs/test_flare22_image.yaml
Preprocessing Details
The original FLARE22 NII.gz CT volumes were preprocessed with:
- CT Windowing: Window level = 40, width = 400 (abdominal soft tissue)
- Normalization: Pixel values normalized to [0, 1] range
- Resizing: Bilinear interpolation to 1024x1024
- Mask Processing:
- Nearest-neighbor interpolation (preserves class IDs)
- Small object removal (< 100 pixels in 2D, < 1000 in 3D)
- RGB Conversion: Grayscale CT converted to 3-channel RGB
Citation
FLARE22 Dataset
@article{ma2022fast,
title={Fast and Low-GPU-memory abdomen CT organ segmentation: The FLARE challenge},
author={Ma, Jun and others},
journal={Medical Image Analysis},
year={2022}
}
SAM
@article{kirillov2023segment,
title={Segment Anything},
author={Kirillov, Alexander and others},
journal={ICCV},
year={2023}
}
SAM2
@article{ravi2024sam2,
title={SAM 2: Segment Anything in Images and Videos},
author={Ravi, Nikhila and others},
journal={arXiv preprint arXiv:2408.00714},
year={2024}
}
License
This preprocessed dataset inherits the license from the original FLARE22 dataset.
- Original License: CC BY 4.0
- Usage: Research and educational purposes
- Attribution: Please cite the original FLARE22 paper when using this dataset
Links
- ๐ฅ FLARE22 Challenge
- ๐ Original Dataset
- ๐ค EasyMedSeg Framework
- ๐ Dataset Card
Acknowledgments
- FLARE22 Challenge Organizers
- Original dataset contributors
- EasyMedSeg framework developers
- Downloads last month
- 15