Dataset Viewer
Auto-converted to Parquet
image
imagewidth (px)
1.02k
1.02k
label
imagewidth (px)
1.02k
1.02k
image_id
stringlengths
26
26
file_name
stringlengths
30
30
case_id
stringclasses
50 values
slice_id
int32
0
112
split
stringclasses
1 value
CT_Abd_FLARE22_Tr_0001-000
CT_Abd_FLARE22_Tr_0001-000.npy
FLARE22_Tr_0001
0
train
CT_Abd_FLARE22_Tr_0001-001
CT_Abd_FLARE22_Tr_0001-001.npy
FLARE22_Tr_0001
1
train
CT_Abd_FLARE22_Tr_0001-002
CT_Abd_FLARE22_Tr_0001-002.npy
FLARE22_Tr_0001
2
train
CT_Abd_FLARE22_Tr_0001-003
CT_Abd_FLARE22_Tr_0001-003.npy
FLARE22_Tr_0001
3
train
CT_Abd_FLARE22_Tr_0001-004
CT_Abd_FLARE22_Tr_0001-004.npy
FLARE22_Tr_0001
4
train
CT_Abd_FLARE22_Tr_0001-005
CT_Abd_FLARE22_Tr_0001-005.npy
FLARE22_Tr_0001
5
train
CT_Abd_FLARE22_Tr_0001-006
CT_Abd_FLARE22_Tr_0001-006.npy
FLARE22_Tr_0001
6
train
CT_Abd_FLARE22_Tr_0001-007
CT_Abd_FLARE22_Tr_0001-007.npy
FLARE22_Tr_0001
7
train
CT_Abd_FLARE22_Tr_0001-008
CT_Abd_FLARE22_Tr_0001-008.npy
FLARE22_Tr_0001
8
train
CT_Abd_FLARE22_Tr_0001-009
CT_Abd_FLARE22_Tr_0001-009.npy
FLARE22_Tr_0001
9
train
CT_Abd_FLARE22_Tr_0001-010
CT_Abd_FLARE22_Tr_0001-010.npy
FLARE22_Tr_0001
10
train
CT_Abd_FLARE22_Tr_0001-011
CT_Abd_FLARE22_Tr_0001-011.npy
FLARE22_Tr_0001
11
train
CT_Abd_FLARE22_Tr_0001-012
CT_Abd_FLARE22_Tr_0001-012.npy
FLARE22_Tr_0001
12
train
CT_Abd_FLARE22_Tr_0001-013
CT_Abd_FLARE22_Tr_0001-013.npy
FLARE22_Tr_0001
13
train
CT_Abd_FLARE22_Tr_0001-014
CT_Abd_FLARE22_Tr_0001-014.npy
FLARE22_Tr_0001
14
train
CT_Abd_FLARE22_Tr_0001-015
CT_Abd_FLARE22_Tr_0001-015.npy
FLARE22_Tr_0001
15
train
CT_Abd_FLARE22_Tr_0001-016
CT_Abd_FLARE22_Tr_0001-016.npy
FLARE22_Tr_0001
16
train
CT_Abd_FLARE22_Tr_0001-017
CT_Abd_FLARE22_Tr_0001-017.npy
FLARE22_Tr_0001
17
train
CT_Abd_FLARE22_Tr_0001-018
CT_Abd_FLARE22_Tr_0001-018.npy
FLARE22_Tr_0001
18
train
CT_Abd_FLARE22_Tr_0001-019
CT_Abd_FLARE22_Tr_0001-019.npy
FLARE22_Tr_0001
19
train
CT_Abd_FLARE22_Tr_0001-020
CT_Abd_FLARE22_Tr_0001-020.npy
FLARE22_Tr_0001
20
train
CT_Abd_FLARE22_Tr_0001-021
CT_Abd_FLARE22_Tr_0001-021.npy
FLARE22_Tr_0001
21
train
CT_Abd_FLARE22_Tr_0001-022
CT_Abd_FLARE22_Tr_0001-022.npy
FLARE22_Tr_0001
22
train
CT_Abd_FLARE22_Tr_0001-023
CT_Abd_FLARE22_Tr_0001-023.npy
FLARE22_Tr_0001
23
train
CT_Abd_FLARE22_Tr_0001-024
CT_Abd_FLARE22_Tr_0001-024.npy
FLARE22_Tr_0001
24
train
CT_Abd_FLARE22_Tr_0001-025
CT_Abd_FLARE22_Tr_0001-025.npy
FLARE22_Tr_0001
25
train
CT_Abd_FLARE22_Tr_0001-026
CT_Abd_FLARE22_Tr_0001-026.npy
FLARE22_Tr_0001
26
train
CT_Abd_FLARE22_Tr_0001-027
CT_Abd_FLARE22_Tr_0001-027.npy
FLARE22_Tr_0001
27
train
CT_Abd_FLARE22_Tr_0001-028
CT_Abd_FLARE22_Tr_0001-028.npy
FLARE22_Tr_0001
28
train
CT_Abd_FLARE22_Tr_0001-029
CT_Abd_FLARE22_Tr_0001-029.npy
FLARE22_Tr_0001
29
train
CT_Abd_FLARE22_Tr_0001-030
CT_Abd_FLARE22_Tr_0001-030.npy
FLARE22_Tr_0001
30
train
CT_Abd_FLARE22_Tr_0001-031
CT_Abd_FLARE22_Tr_0001-031.npy
FLARE22_Tr_0001
31
train
CT_Abd_FLARE22_Tr_0001-032
CT_Abd_FLARE22_Tr_0001-032.npy
FLARE22_Tr_0001
32
train
CT_Abd_FLARE22_Tr_0001-033
CT_Abd_FLARE22_Tr_0001-033.npy
FLARE22_Tr_0001
33
train
CT_Abd_FLARE22_Tr_0001-034
CT_Abd_FLARE22_Tr_0001-034.npy
FLARE22_Tr_0001
34
train
CT_Abd_FLARE22_Tr_0001-035
CT_Abd_FLARE22_Tr_0001-035.npy
FLARE22_Tr_0001
35
train
CT_Abd_FLARE22_Tr_0001-036
CT_Abd_FLARE22_Tr_0001-036.npy
FLARE22_Tr_0001
36
train
CT_Abd_FLARE22_Tr_0001-037
CT_Abd_FLARE22_Tr_0001-037.npy
FLARE22_Tr_0001
37
train
CT_Abd_FLARE22_Tr_0001-038
CT_Abd_FLARE22_Tr_0001-038.npy
FLARE22_Tr_0001
38
train
CT_Abd_FLARE22_Tr_0001-039
CT_Abd_FLARE22_Tr_0001-039.npy
FLARE22_Tr_0001
39
train
CT_Abd_FLARE22_Tr_0001-040
CT_Abd_FLARE22_Tr_0001-040.npy
FLARE22_Tr_0001
40
train
CT_Abd_FLARE22_Tr_0001-041
CT_Abd_FLARE22_Tr_0001-041.npy
FLARE22_Tr_0001
41
train
CT_Abd_FLARE22_Tr_0001-042
CT_Abd_FLARE22_Tr_0001-042.npy
FLARE22_Tr_0001
42
train
CT_Abd_FLARE22_Tr_0001-043
CT_Abd_FLARE22_Tr_0001-043.npy
FLARE22_Tr_0001
43
train
CT_Abd_FLARE22_Tr_0001-044
CT_Abd_FLARE22_Tr_0001-044.npy
FLARE22_Tr_0001
44
train
CT_Abd_FLARE22_Tr_0001-045
CT_Abd_FLARE22_Tr_0001-045.npy
FLARE22_Tr_0001
45
train
CT_Abd_FLARE22_Tr_0001-046
CT_Abd_FLARE22_Tr_0001-046.npy
FLARE22_Tr_0001
46
train
CT_Abd_FLARE22_Tr_0001-047
CT_Abd_FLARE22_Tr_0001-047.npy
FLARE22_Tr_0001
47
train
CT_Abd_FLARE22_Tr_0001-048
CT_Abd_FLARE22_Tr_0001-048.npy
FLARE22_Tr_0001
48
train
CT_Abd_FLARE22_Tr_0001-049
CT_Abd_FLARE22_Tr_0001-049.npy
FLARE22_Tr_0001
49
train
CT_Abd_FLARE22_Tr_0001-050
CT_Abd_FLARE22_Tr_0001-050.npy
FLARE22_Tr_0001
50
train
CT_Abd_FLARE22_Tr_0001-051
CT_Abd_FLARE22_Tr_0001-051.npy
FLARE22_Tr_0001
51
train
CT_Abd_FLARE22_Tr_0001-052
CT_Abd_FLARE22_Tr_0001-052.npy
FLARE22_Tr_0001
52
train
CT_Abd_FLARE22_Tr_0001-053
CT_Abd_FLARE22_Tr_0001-053.npy
FLARE22_Tr_0001
53
train
CT_Abd_FLARE22_Tr_0001-054
CT_Abd_FLARE22_Tr_0001-054.npy
FLARE22_Tr_0001
54
train
CT_Abd_FLARE22_Tr_0001-055
CT_Abd_FLARE22_Tr_0001-055.npy
FLARE22_Tr_0001
55
train
CT_Abd_FLARE22_Tr_0001-056
CT_Abd_FLARE22_Tr_0001-056.npy
FLARE22_Tr_0001
56
train
CT_Abd_FLARE22_Tr_0001-057
CT_Abd_FLARE22_Tr_0001-057.npy
FLARE22_Tr_0001
57
train
CT_Abd_FLARE22_Tr_0001-058
CT_Abd_FLARE22_Tr_0001-058.npy
FLARE22_Tr_0001
58
train
CT_Abd_FLARE22_Tr_0001-059
CT_Abd_FLARE22_Tr_0001-059.npy
FLARE22_Tr_0001
59
train
CT_Abd_FLARE22_Tr_0001-060
CT_Abd_FLARE22_Tr_0001-060.npy
FLARE22_Tr_0001
60
train
CT_Abd_FLARE22_Tr_0001-061
CT_Abd_FLARE22_Tr_0001-061.npy
FLARE22_Tr_0001
61
train
CT_Abd_FLARE22_Tr_0001-062
CT_Abd_FLARE22_Tr_0001-062.npy
FLARE22_Tr_0001
62
train
CT_Abd_FLARE22_Tr_0001-063
CT_Abd_FLARE22_Tr_0001-063.npy
FLARE22_Tr_0001
63
train
CT_Abd_FLARE22_Tr_0001-064
CT_Abd_FLARE22_Tr_0001-064.npy
FLARE22_Tr_0001
64
train
CT_Abd_FLARE22_Tr_0001-065
CT_Abd_FLARE22_Tr_0001-065.npy
FLARE22_Tr_0001
65
train
CT_Abd_FLARE22_Tr_0001-066
CT_Abd_FLARE22_Tr_0001-066.npy
FLARE22_Tr_0001
66
train
CT_Abd_FLARE22_Tr_0001-067
CT_Abd_FLARE22_Tr_0001-067.npy
FLARE22_Tr_0001
67
train
CT_Abd_FLARE22_Tr_0001-068
CT_Abd_FLARE22_Tr_0001-068.npy
FLARE22_Tr_0001
68
train
CT_Abd_FLARE22_Tr_0001-069
CT_Abd_FLARE22_Tr_0001-069.npy
FLARE22_Tr_0001
69
train
CT_Abd_FLARE22_Tr_0001-070
CT_Abd_FLARE22_Tr_0001-070.npy
FLARE22_Tr_0001
70
train
CT_Abd_FLARE22_Tr_0001-071
CT_Abd_FLARE22_Tr_0001-071.npy
FLARE22_Tr_0001
71
train
CT_Abd_FLARE22_Tr_0001-072
CT_Abd_FLARE22_Tr_0001-072.npy
FLARE22_Tr_0001
72
train
CT_Abd_FLARE22_Tr_0001-073
CT_Abd_FLARE22_Tr_0001-073.npy
FLARE22_Tr_0001
73
train
CT_Abd_FLARE22_Tr_0001-074
CT_Abd_FLARE22_Tr_0001-074.npy
FLARE22_Tr_0001
74
train
CT_Abd_FLARE22_Tr_0001-075
CT_Abd_FLARE22_Tr_0001-075.npy
FLARE22_Tr_0001
75
train
CT_Abd_FLARE22_Tr_0001-076
CT_Abd_FLARE22_Tr_0001-076.npy
FLARE22_Tr_0001
76
train
CT_Abd_FLARE22_Tr_0001-077
CT_Abd_FLARE22_Tr_0001-077.npy
FLARE22_Tr_0001
77
train
CT_Abd_FLARE22_Tr_0001-078
CT_Abd_FLARE22_Tr_0001-078.npy
FLARE22_Tr_0001
78
train
CT_Abd_FLARE22_Tr_0001-079
CT_Abd_FLARE22_Tr_0001-079.npy
FLARE22_Tr_0001
79
train
CT_Abd_FLARE22_Tr_0001-080
CT_Abd_FLARE22_Tr_0001-080.npy
FLARE22_Tr_0001
80
train
CT_Abd_FLARE22_Tr_0001-081
CT_Abd_FLARE22_Tr_0001-081.npy
FLARE22_Tr_0001
81
train
CT_Abd_FLARE22_Tr_0001-082
CT_Abd_FLARE22_Tr_0001-082.npy
FLARE22_Tr_0001
82
train
CT_Abd_FLARE22_Tr_0001-083
CT_Abd_FLARE22_Tr_0001-083.npy
FLARE22_Tr_0001
83
train
CT_Abd_FLARE22_Tr_0001-084
CT_Abd_FLARE22_Tr_0001-084.npy
FLARE22_Tr_0001
84
train
CT_Abd_FLARE22_Tr_0001-085
CT_Abd_FLARE22_Tr_0001-085.npy
FLARE22_Tr_0001
85
train
CT_Abd_FLARE22_Tr_0001-086
CT_Abd_FLARE22_Tr_0001-086.npy
FLARE22_Tr_0001
86
train
CT_Abd_FLARE22_Tr_0001-087
CT_Abd_FLARE22_Tr_0001-087.npy
FLARE22_Tr_0001
87
train
CT_Abd_FLARE22_Tr_0001-088
CT_Abd_FLARE22_Tr_0001-088.npy
FLARE22_Tr_0001
88
train
CT_Abd_FLARE22_Tr_0001-089
CT_Abd_FLARE22_Tr_0001-089.npy
FLARE22_Tr_0001
89
train
CT_Abd_FLARE22_Tr_0001-090
CT_Abd_FLARE22_Tr_0001-090.npy
FLARE22_Tr_0001
90
train
CT_Abd_FLARE22_Tr_0001-091
CT_Abd_FLARE22_Tr_0001-091.npy
FLARE22_Tr_0001
91
train
CT_Abd_FLARE22_Tr_0001-092
CT_Abd_FLARE22_Tr_0001-092.npy
FLARE22_Tr_0001
92
train
CT_Abd_FLARE22_Tr_0001-093
CT_Abd_FLARE22_Tr_0001-093.npy
FLARE22_Tr_0001
93
train
CT_Abd_FLARE22_Tr_0001-094
CT_Abd_FLARE22_Tr_0001-094.npy
FLARE22_Tr_0001
94
train
CT_Abd_FLARE22_Tr_0001-095
CT_Abd_FLARE22_Tr_0001-095.npy
FLARE22_Tr_0001
95
train
CT_Abd_FLARE22_Tr_0001-096
CT_Abd_FLARE22_Tr_0001-096.npy
FLARE22_Tr_0001
96
train
CT_Abd_FLARE22_Tr_0001-097
CT_Abd_FLARE22_Tr_0001-097.npy
FLARE22_Tr_0001
97
train
CT_Abd_FLARE22_Tr_0001-098
CT_Abd_FLARE22_Tr_0001-098.npy
FLARE22_Tr_0001
98
train
CT_Abd_FLARE22_Tr_0001-099
CT_Abd_FLARE22_Tr_0001-099.npy
FLARE22_Tr_0001
99
train
End of preview. Expand in Data Studio
YAML Metadata Warning: The task_categories "medical" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other

FLARE22 CT Abdominal Organ Segmentation Dataset (Preprocessed)

Dataset Description

This is a preprocessed version of the FLARE22 (Fast and Low-resource semi-supervised Abdominal oRgan sEgmentation) dataset, optimized for SAM/SAM2 evaluation.

  • Original Dataset: FLARE22 on Zenodo
  • Preprocessing: CT windowing, resizing to 1024x1024, multi-organ masks
  • Format: RGB images (PNG) + grayscale masks with organ class IDs

Dataset Statistics

  • Splits: train
  • Total Samples: 4543 CT slices
  • Image Size: 1024 x 1024 pixels
  • Organs: 13 classes (liver, kidneys, spleen, pancreas, aorta, etc.)

Organ Classes

Class ID Organ Name (English) Organ Name (ไธญๆ–‡)
0 Background ่ƒŒๆ™ฏ
1 Liver ่‚่„
2 Right Kidney ๅณ่‚พ
3 Spleen ่„พ่„
4 Pancreas ่ƒฐ่…บ
5 Aorta ไธปๅŠจ่„‰
6 Inferior Vena Cava ไธ‹่…”้™่„‰
7 Right Adrenal Gland ๅณ่‚พไธŠ่…บ
8 Left Adrenal Gland ๅทฆ่‚พไธŠ่…บ
9 Gallbladder ่ƒ†ๅ›Š
10 Esophagus ้ฃŸ็ฎก
11 Stomach ่ƒƒ
13 Left Kidney ๅทฆ่‚พ

Note: Class 12 (Duodenum/ๅไบŒๆŒ‡่‚ ) is removed by default due to scattered distribution.

Usage

Load with ๐Ÿค— Datasets

from datasets import load_dataset

# Load dataset
dataset = load_dataset("Angelou0516/FLARE22-CT-Abd", split="val")

# Access sample
sample = dataset[0]
image = sample['image']  # PIL Image (RGB)
mask = sample['label']   # PIL Image (grayscale with class IDs)
case_id = sample['case_id']

Use with EasyMedSeg

from dataloader.image.flare22_dataset import FLARE22Dataset

# Will automatically download from HuggingFace
dataset = FLARE22Dataset(
    mode='download',
    split='val',
    hf_repo_id='Angelou0516/FLARE22-CT-Abd'
)

sample = dataset[0]
image = sample['image']  # PIL Image
mask = sample['mask']    # numpy array

Evaluation with SAM/SAM2

# Clone EasyMedSeg
git clone https://github.com/your-org/EasyMedSeg.git
cd EasyMedSeg

# Install dependencies
pip install -r requirements.txt

# Run evaluation
python scripts/evaluation.py --config configs/test_flare22_image.yaml

Preprocessing Details

The original FLARE22 NII.gz CT volumes were preprocessed with:

  1. CT Windowing: Window level = 40, width = 400 (abdominal soft tissue)
  2. Normalization: Pixel values normalized to [0, 1] range
  3. Resizing: Bilinear interpolation to 1024x1024
  4. Mask Processing:
    • Nearest-neighbor interpolation (preserves class IDs)
    • Small object removal (< 100 pixels in 2D, < 1000 in 3D)
  5. RGB Conversion: Grayscale CT converted to 3-channel RGB

Citation

FLARE22 Dataset

@article{ma2022fast,
  title={Fast and Low-GPU-memory abdomen CT organ segmentation: The FLARE challenge},
  author={Ma, Jun and others},
  journal={Medical Image Analysis},
  year={2022}
}

SAM

@article{kirillov2023segment,
  title={Segment Anything},
  author={Kirillov, Alexander and others},
  journal={ICCV},
  year={2023}
}

SAM2

@article{ravi2024sam2,
  title={SAM 2: Segment Anything in Images and Videos},
  author={Ravi, Nikhila and others},
  journal={arXiv preprint arXiv:2408.00714},
  year={2024}
}

License

This preprocessed dataset inherits the license from the original FLARE22 dataset.

  • Original License: CC BY 4.0
  • Usage: Research and educational purposes
  • Attribution: Please cite the original FLARE22 paper when using this dataset

Links

Acknowledgments

  • FLARE22 Challenge Organizers
  • Original dataset contributors
  • EasyMedSeg framework developers
Downloads last month
15