events / README.md
Samoed's picture
Upload dataset
ddb0a32 verified
---
dataset_info:
- config_name: default
features:
- name: utterance
dtype: string
- name: label
sequence: int64
splits:
- name: train
num_bytes: 8999208
num_examples: 2742
- name: test
num_bytes: 1255307
num_examples: 378
download_size: 22576550
dataset_size: 10254515
- config_name: intents
features:
- name: id
dtype: int64
- name: name
dtype: string
- name: tags
sequence: 'null'
- name: regex_full_match
sequence: 'null'
- name: regex_partial_match
sequence: 'null'
- name: description
dtype: 'null'
splits:
- name: full_intents
num_bytes: 1240
num_examples: 29
- name: intents
num_bytes: 907
num_examples: 21
download_size: 8042
dataset_size: 2147
- config_name: intentsqwen3-32b
features:
- name: id
dtype: int64
- name: name
dtype: string
- name: tags
sequence: 'null'
- name: regex_full_match
sequence: 'null'
- name: regex_partial_match
sequence: 'null'
- name: description
dtype: string
splits:
- name: intents
num_bytes: 2497
num_examples: 21
download_size: 5062
dataset_size: 2497
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- config_name: intents
data_files:
- split: full_intents
path: intents/full_intents-*
- split: intents
path: intents/intents-*
- config_name: intentsqwen3-32b
data_files:
- split: intents
path: intentsqwen3-32b/intents-*
---
# events
This is a text classification dataset. It is intended for machine learning research and experimentation.
This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html).
## Usage
It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
```python
from autointent import Dataset
banking77 = Dataset.from_hub("AutoIntent/events")
```
## Source
This dataset is taken from `knowledgator/events_classification_biotech` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
```python
"""Convert events dataset to autointent internal format and scheme."""
from datasets import Dataset as HFDataset
from datasets import load_dataset
from autointent import Dataset
from autointent.schemas import Intent
def extract_intents_data(events_dataset: HFDataset) -> list[Intent]:
"""Extract intent names and assign ids to them."""
intent_names = sorted({name for intents in events_dataset["train"]["all_labels"] for name in intents})
return [Intent(id=i,name=name) for i, name in enumerate(intent_names)]
def converting_mapping(example: dict, intents_data: list[Intent]) -> dict[str, str | list[int] | None]:
"""Extract utterance and OHE label and drop the rest."""
res = {
"utterance": example["content"],
"label": [
int(intent.name in example["all_labels"]) for intent in intents_data
]
}
if sum(res["label"]) == 0:
res["label"] = None
return res
def convert_events(events_split: HFDataset, intents_data: dict[str, int]) -> list[dict]:
"""Convert one split into desired format."""
events_split = events_split.map(
converting_mapping, remove_columns=events_split.features.keys(),
fn_kwargs={"intents_data": intents_data}
)
return [sample for sample in events_split if sample["utterance"] is not None]
def get_low_resource_classes_mask(ds: list[dict], intent_names: list[str], fraction_thresh: float = 0.01) -> list[bool]:
res = [0] * len(intent_names)
for sample in ds:
for i, indicator in enumerate(sample["label"]):
res[i] += indicator
for i in range(len(intent_names)):
res[i] /= len(ds)
return [(frac < fraction_thresh) for frac in res]
def remove_low_resource_classes(ds: list[dict], mask: list[bool]) -> list[dict]:
res = []
for sample in ds:
if sum(sample["label"]) == 1 and mask[sample["label"].index(1)]:
continue
sample["label"] = [
indicator for indicator, low_resource in
zip(sample["label"], mask, strict=True) if not low_resource
]
res.append(sample)
return res
def remove_oos(ds: list[dict]):
return [sample for sample in ds if sum(sample["label"]) != 0]
if __name__ == "__main__":
# `load_dataset` might not work
# fix is here: https://github.com/huggingface/datasets/issues/7248
events_dataset = load_dataset("knowledgator/events_classification_biotech", trust_remote_code=True)
intents_data = extract_intents_data(events_dataset)
train_samples = convert_events(events_dataset["train"], intents_data)
test_samples = convert_events(events_dataset["test"], intents_data)
intents_names = [intent.name for intent in intents_data]
mask = get_low_resource_classes_mask(train_samples, intents_names)
train_samples = remove_oos(remove_low_resource_classes(train_samples, mask))
test_samples = remove_oos(remove_low_resource_classes(test_samples, mask))
events_converted = Dataset.from_dict(
{"train": train_samples, "test": test_samples, "intents": intents_data}
)
```