|
|
--- |
|
|
dataset_info: |
|
|
- config_name: default |
|
|
features: |
|
|
- name: utterance |
|
|
dtype: string |
|
|
- name: label |
|
|
sequence: int64 |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 8999208 |
|
|
num_examples: 2742 |
|
|
- name: test |
|
|
num_bytes: 1255307 |
|
|
num_examples: 378 |
|
|
download_size: 22576550 |
|
|
dataset_size: 10254515 |
|
|
- config_name: intents |
|
|
features: |
|
|
- name: id |
|
|
dtype: int64 |
|
|
- name: name |
|
|
dtype: string |
|
|
- name: tags |
|
|
sequence: 'null' |
|
|
- name: regex_full_match |
|
|
sequence: 'null' |
|
|
- name: regex_partial_match |
|
|
sequence: 'null' |
|
|
- name: description |
|
|
dtype: 'null' |
|
|
splits: |
|
|
- name: full_intents |
|
|
num_bytes: 1240 |
|
|
num_examples: 29 |
|
|
- name: intents |
|
|
num_bytes: 907 |
|
|
num_examples: 21 |
|
|
download_size: 8042 |
|
|
dataset_size: 2147 |
|
|
- config_name: intentsqwen3-32b |
|
|
features: |
|
|
- name: id |
|
|
dtype: int64 |
|
|
- name: name |
|
|
dtype: string |
|
|
- name: tags |
|
|
sequence: 'null' |
|
|
- name: regex_full_match |
|
|
sequence: 'null' |
|
|
- name: regex_partial_match |
|
|
sequence: 'null' |
|
|
- name: description |
|
|
dtype: string |
|
|
splits: |
|
|
- name: intents |
|
|
num_bytes: 2497 |
|
|
num_examples: 21 |
|
|
download_size: 5062 |
|
|
dataset_size: 2497 |
|
|
configs: |
|
|
- config_name: default |
|
|
data_files: |
|
|
- split: train |
|
|
path: data/train-* |
|
|
- split: test |
|
|
path: data/test-* |
|
|
- config_name: intents |
|
|
data_files: |
|
|
- split: full_intents |
|
|
path: intents/full_intents-* |
|
|
- split: intents |
|
|
path: intents/intents-* |
|
|
- config_name: intentsqwen3-32b |
|
|
data_files: |
|
|
- split: intents |
|
|
path: intentsqwen3-32b/intents-* |
|
|
--- |
|
|
|
|
|
# events |
|
|
|
|
|
This is a text classification dataset. It is intended for machine learning research and experimentation. |
|
|
|
|
|
This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html). |
|
|
|
|
|
## Usage |
|
|
|
|
|
It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): |
|
|
|
|
|
```python |
|
|
from autointent import Dataset |
|
|
banking77 = Dataset.from_hub("AutoIntent/events") |
|
|
``` |
|
|
|
|
|
## Source |
|
|
|
|
|
This dataset is taken from `knowledgator/events_classification_biotech` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): |
|
|
|
|
|
```python |
|
|
"""Convert events dataset to autointent internal format and scheme.""" |
|
|
|
|
|
from datasets import Dataset as HFDataset |
|
|
from datasets import load_dataset |
|
|
|
|
|
from autointent import Dataset |
|
|
from autointent.schemas import Intent |
|
|
|
|
|
|
|
|
def extract_intents_data(events_dataset: HFDataset) -> list[Intent]: |
|
|
"""Extract intent names and assign ids to them.""" |
|
|
intent_names = sorted({name for intents in events_dataset["train"]["all_labels"] for name in intents}) |
|
|
return [Intent(id=i,name=name) for i, name in enumerate(intent_names)] |
|
|
|
|
|
|
|
|
def converting_mapping(example: dict, intents_data: list[Intent]) -> dict[str, str | list[int] | None]: |
|
|
"""Extract utterance and OHE label and drop the rest.""" |
|
|
res = { |
|
|
"utterance": example["content"], |
|
|
"label": [ |
|
|
int(intent.name in example["all_labels"]) for intent in intents_data |
|
|
] |
|
|
} |
|
|
if sum(res["label"]) == 0: |
|
|
res["label"] = None |
|
|
return res |
|
|
|
|
|
|
|
|
def convert_events(events_split: HFDataset, intents_data: dict[str, int]) -> list[dict]: |
|
|
"""Convert one split into desired format.""" |
|
|
events_split = events_split.map( |
|
|
converting_mapping, remove_columns=events_split.features.keys(), |
|
|
fn_kwargs={"intents_data": intents_data} |
|
|
) |
|
|
|
|
|
return [sample for sample in events_split if sample["utterance"] is not None] |
|
|
|
|
|
|
|
|
def get_low_resource_classes_mask(ds: list[dict], intent_names: list[str], fraction_thresh: float = 0.01) -> list[bool]: |
|
|
res = [0] * len(intent_names) |
|
|
for sample in ds: |
|
|
for i, indicator in enumerate(sample["label"]): |
|
|
res[i] += indicator |
|
|
for i in range(len(intent_names)): |
|
|
res[i] /= len(ds) |
|
|
return [(frac < fraction_thresh) for frac in res] |
|
|
|
|
|
|
|
|
def remove_low_resource_classes(ds: list[dict], mask: list[bool]) -> list[dict]: |
|
|
res = [] |
|
|
for sample in ds: |
|
|
if sum(sample["label"]) == 1 and mask[sample["label"].index(1)]: |
|
|
continue |
|
|
sample["label"] = [ |
|
|
indicator for indicator, low_resource in |
|
|
zip(sample["label"], mask, strict=True) if not low_resource |
|
|
] |
|
|
res.append(sample) |
|
|
return res |
|
|
|
|
|
|
|
|
def remove_oos(ds: list[dict]): |
|
|
return [sample for sample in ds if sum(sample["label"]) != 0] |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
# `load_dataset` might not work |
|
|
# fix is here: https://github.com/huggingface/datasets/issues/7248 |
|
|
events_dataset = load_dataset("knowledgator/events_classification_biotech", trust_remote_code=True) |
|
|
|
|
|
intents_data = extract_intents_data(events_dataset) |
|
|
|
|
|
train_samples = convert_events(events_dataset["train"], intents_data) |
|
|
test_samples = convert_events(events_dataset["test"], intents_data) |
|
|
|
|
|
intents_names = [intent.name for intent in intents_data] |
|
|
mask = get_low_resource_classes_mask(train_samples, intents_names) |
|
|
train_samples = remove_oos(remove_low_resource_classes(train_samples, mask)) |
|
|
test_samples = remove_oos(remove_low_resource_classes(test_samples, mask)) |
|
|
|
|
|
events_converted = Dataset.from_dict( |
|
|
{"train": train_samples, "test": test_samples, "intents": intents_data} |
|
|
) |
|
|
``` |
|
|
|