indicxnli / README.md
SaylorTwift's picture
SaylorTwift HF Staff
Add 'te' config data files
81a1da6 verified
|
raw
history blame
13.1 kB
metadata
annotations_creators:
  - machine-generated
language_creators:
  - machine-generated
language:
  - as
  - bn
  - gu
  - hi
  - kn
  - ml
  - mr
  - or
  - pa
  - ta
  - te
license:
  - cc0-1.0
multilinguality:
  - multilingual
pretty_name: IndicXNLI
size_categories:
  - 1M<n<10M
source_datasets:
  - original
task_categories:
  - text-classification
task_ids:
  - natural-language-inference
dataset_info:
  - config_name: as
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 172049648
        num_examples: 392702
      - name: test
        num_bytes: 2097452
        num_examples: 5010
      - name: validation
        num_bytes: 1042526
        num_examples: 2490
    download_size: 74371257
    dataset_size: 175189626
  - config_name: bn
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 174095464
        num_examples: 392702
      - name: test
        num_bytes: 2113149
        num_examples: 5010
      - name: validation
        num_bytes: 1044438
        num_examples: 2490
    download_size: 74466392
    dataset_size: 177253051
  - config_name: gu
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 167102046
        num_examples: 392702
      - name: test
        num_bytes: 2016682
        num_examples: 5010
      - name: validation
        num_bytes: 992611
        num_examples: 2490
    download_size: 73329179
    dataset_size: 170111339
  - config_name: hi
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 175582034
        num_examples: 392702
      - name: test
        num_bytes: 2109705
        num_examples: 5010
      - name: validation
        num_bytes: 1043487
        num_examples: 2490
    download_size: 74840429
    dataset_size: 178735226
  - config_name: kn
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 188780510
        num_examples: 392702
      - name: test
        num_bytes: 2309807
        num_examples: 5010
      - name: validation
        num_bytes: 1139277
        num_examples: 2490
    download_size: 78285369
    dataset_size: 192229594
  - config_name: ml
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 187851515
        num_examples: 392702
      - name: test
        num_bytes: 2362836
        num_examples: 5010
      - name: validation
        num_bytes: 1171953
        num_examples: 2490
    download_size: 77263292
    dataset_size: 191386304
  - config_name: mr
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 170752688
        num_examples: 392702
      - name: test
        num_bytes: 2078079
        num_examples: 5010
      - name: validation
        num_bytes: 1028494
        num_examples: 2490
    download_size: 73035248
    dataset_size: 173859261
  - config_name: or
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 173273552
        num_examples: 392702
      - name: test
        num_bytes: 2135557
        num_examples: 5010
      - name: validation
        num_bytes: 1047017
        num_examples: 2490
    download_size: 73223669
    dataset_size: 176456126
  - config_name: pa
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 172665273
        num_examples: 392702
      - name: test
        num_bytes: 2077462
        num_examples: 5010
      - name: validation
        num_bytes: 1030309
        num_examples: 2490
    download_size: 73760675
    dataset_size: 175773044
  - config_name: ta
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 206105782
        num_examples: 392702
      - name: test
        num_bytes: 2520985
        num_examples: 5010
      - name: validation
        num_bytes: 1637644
        num_examples: 3238
    download_size: 79964341
    dataset_size: 210264411
  - config_name: te
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype:
          class_label:
            names:
              '0': entailment
              '1': neutral
              '2': contradiction
    splits:
      - name: train
        num_bytes: 175597688
        num_examples: 392702
      - name: test
        num_bytes: 2145349
        num_examples: 5010
      - name: validation
        num_bytes: 1056174
        num_examples: 2490
    download_size: 75184880
    dataset_size: 178799211
configs:
  - config_name: as
    data_files:
      - split: train
        path: as/train-*
      - split: test
        path: as/test-*
      - split: validation
        path: as/validation-*
  - config_name: bn
    data_files:
      - split: train
        path: bn/train-*
      - split: test
        path: bn/test-*
      - split: validation
        path: bn/validation-*
  - config_name: gu
    data_files:
      - split: train
        path: gu/train-*
      - split: test
        path: gu/test-*
      - split: validation
        path: gu/validation-*
  - config_name: hi
    data_files:
      - split: train
        path: hi/train-*
      - split: test
        path: hi/test-*
      - split: validation
        path: hi/validation-*
  - config_name: kn
    data_files:
      - split: train
        path: kn/train-*
      - split: test
        path: kn/test-*
      - split: validation
        path: kn/validation-*
  - config_name: ml
    data_files:
      - split: train
        path: ml/train-*
      - split: test
        path: ml/test-*
      - split: validation
        path: ml/validation-*
  - config_name: mr
    data_files:
      - split: train
        path: mr/train-*
      - split: test
        path: mr/test-*
      - split: validation
        path: mr/validation-*
  - config_name: or
    data_files:
      - split: train
        path: or/train-*
      - split: test
        path: or/test-*
      - split: validation
        path: or/validation-*
  - config_name: pa
    data_files:
      - split: train
        path: pa/train-*
      - split: test
        path: pa/test-*
      - split: validation
        path: pa/validation-*
  - config_name: ta
    data_files:
      - split: train
        path: ta/train-*
      - split: test
        path: ta/test-*
      - split: validation
        path: ta/validation-*
  - config_name: te
    data_files:
      - split: train
        path: te/train-*
      - split: test
        path: te/test-*
      - split: validation
        path: te/validation-*

Dataset Card for "IndicXNLI"

Table of Contents

Dataset Description

Dataset Summary

INDICXNLI is similar to existing XNLI dataset in shape/form, but focusses on Indic language family. INDICXNLI include NLI data for eleven major Indic languages that includes Assamese (‘as’), Gujarat (‘gu’), Kannada (‘kn’), Malayalam (‘ml’), Marathi (‘mr’), Odia (‘or’), Punjabi (‘pa’), Tamil (‘ta’), Telugu (‘te’), Hindi (‘hi’), and Bengali (‘bn’).

Supported Tasks and Leaderboards

Tasks: Natural Language Inference

Leaderboards: Currently there is no Leaderboard for this dataset.

Languages

  • Assamese (as)
  • Bengali (bn)
  • Gujarati (gu)
  • Kannada (kn)
  • Hindi (hi)
  • Malayalam (ml)
  • Marathi (mr)
  • Oriya (or)
  • Punjabi (pa)
  • Tamil (ta)
  • Telugu (te)

Dataset Structure

Data Instances

One example from the hi dataset is given below in JSON format.

 {'premise': 'अवधारणात्मक रूप से क्रीम स्किमिंग के दो बुनियादी आयाम हैं-उत्पाद और भूगोल।',
 'hypothesis': 'उत्पाद और भूगोल क्रीम स्किमिंग का काम करते हैं।',
 'label': 1 (neutral) }

Data Fields

  • premise (string): Premise Sentence
  • hypothesis (string): Hypothesis Sentence
  • label (integer): Integer label 0 if hypothesis entails the premise, 2 if hypothesis negates the premise and 1 otherwise.

Data Splits

Language ISO 639-1 Code Train Test Dev
Assamese as 392,702 5,010 2,490
Bengali bn 392,702 5,010 2,490
Gujarati gu 392,702 5,010 2,490
Hindi hi 392,702 5,010 2,490
Kannada kn 392,702 5,010 2,490
Malayalam ml 392,702 5,010 2,490
Marathi mr 392,702 5,010 2,490
Oriya or 392,702 5,010 2,490
Punjabi pa 392,702 5,010 2,490
Tamil ta 392,702 5,010 2,490
Telugu te 392,702 5,010 2,490

Dataset usage

Code snippet for using the dataset using datasets library.

from datasets import load_dataset

dataset = load_dataset("Divyanshu/indicxnli")

Dataset Creation

Machine translation of XNLI english dataset to 11 listed Indic Languages.

Curation Rationale

[More information needed]

Source Data

XNLI dataset

Initial Data Collection and Normalization

Detailed in the paper

Who are the source language producers?

Detailed in the paper

Human Verification Process

Detailed in the paper

Considerations for Using the Data

Social Impact of Dataset

Detailed in the paper

Discussion of Biases

Detailed in the paper

Other Known Limitations

Detailed in the paper

Dataset Curators

Divyanshu Aggarwal, Vivek Gupta, Anoop Kunchukuttan

Licensing Information

Contents of this repository are restricted to only non-commercial research purposes under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). Copyright of the dataset contents belongs to the original copyright holders.

Citation Information

If you use any of the datasets, models or code modules, please cite the following paper:

@misc{https://doi.org/10.48550/arxiv.2204.08776,
  doi = {10.48550/ARXIV.2204.08776},
  
  url = {https://arxiv.org/abs/2204.08776},
  
  author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
  
  keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages}, 
  
  publisher = {arXiv},
  
  year = {2022},
  
  copyright = {Creative Commons Attribution 4.0 International}
}