Datasets:
annotations_creators:
- machine-generated
language_creators:
- machine-generated
language:
- as
- bn
- gu
- hi
- kn
- ml
- mr
- or
- pa
- ta
- te
license:
- cc0-1.0
multilinguality:
- multilingual
pretty_name: IndicXNLI
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- natural-language-inference
dataset_info:
- config_name: as
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 172049648
num_examples: 392702
- name: test
num_bytes: 2097452
num_examples: 5010
- name: validation
num_bytes: 1042526
num_examples: 2490
download_size: 74371257
dataset_size: 175189626
- config_name: bn
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 174095464
num_examples: 392702
- name: test
num_bytes: 2113149
num_examples: 5010
- name: validation
num_bytes: 1044438
num_examples: 2490
download_size: 74466392
dataset_size: 177253051
- config_name: gu
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 167102046
num_examples: 392702
- name: test
num_bytes: 2016682
num_examples: 5010
- name: validation
num_bytes: 992611
num_examples: 2490
download_size: 73329179
dataset_size: 170111339
- config_name: hi
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 175582034
num_examples: 392702
- name: test
num_bytes: 2109705
num_examples: 5010
- name: validation
num_bytes: 1043487
num_examples: 2490
download_size: 74840429
dataset_size: 178735226
- config_name: kn
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 188780510
num_examples: 392702
- name: test
num_bytes: 2309807
num_examples: 5010
- name: validation
num_bytes: 1139277
num_examples: 2490
download_size: 78285369
dataset_size: 192229594
- config_name: ml
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 187851515
num_examples: 392702
- name: test
num_bytes: 2362836
num_examples: 5010
- name: validation
num_bytes: 1171953
num_examples: 2490
download_size: 77263292
dataset_size: 191386304
- config_name: mr
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 170752688
num_examples: 392702
- name: test
num_bytes: 2078079
num_examples: 5010
- name: validation
num_bytes: 1028494
num_examples: 2490
download_size: 73035248
dataset_size: 173859261
- config_name: or
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 173273552
num_examples: 392702
- name: test
num_bytes: 2135557
num_examples: 5010
- name: validation
num_bytes: 1047017
num_examples: 2490
download_size: 73223669
dataset_size: 176456126
- config_name: pa
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 172665273
num_examples: 392702
- name: test
num_bytes: 2077462
num_examples: 5010
- name: validation
num_bytes: 1030309
num_examples: 2490
download_size: 73760675
dataset_size: 175773044
- config_name: ta
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 206105782
num_examples: 392702
- name: test
num_bytes: 2520985
num_examples: 5010
- name: validation
num_bytes: 1637644
num_examples: 3238
download_size: 79964341
dataset_size: 210264411
- config_name: te
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 175597688
num_examples: 392702
- name: test
num_bytes: 2145349
num_examples: 5010
- name: validation
num_bytes: 1056174
num_examples: 2490
download_size: 75184880
dataset_size: 178799211
configs:
- config_name: as
data_files:
- split: train
path: as/train-*
- split: test
path: as/test-*
- split: validation
path: as/validation-*
- config_name: bn
data_files:
- split: train
path: bn/train-*
- split: test
path: bn/test-*
- split: validation
path: bn/validation-*
- config_name: gu
data_files:
- split: train
path: gu/train-*
- split: test
path: gu/test-*
- split: validation
path: gu/validation-*
- config_name: hi
data_files:
- split: train
path: hi/train-*
- split: test
path: hi/test-*
- split: validation
path: hi/validation-*
- config_name: kn
data_files:
- split: train
path: kn/train-*
- split: test
path: kn/test-*
- split: validation
path: kn/validation-*
- config_name: ml
data_files:
- split: train
path: ml/train-*
- split: test
path: ml/test-*
- split: validation
path: ml/validation-*
- config_name: mr
data_files:
- split: train
path: mr/train-*
- split: test
path: mr/test-*
- split: validation
path: mr/validation-*
- config_name: or
data_files:
- split: train
path: or/train-*
- split: test
path: or/test-*
- split: validation
path: or/validation-*
- config_name: pa
data_files:
- split: train
path: pa/train-*
- split: test
path: pa/test-*
- split: validation
path: pa/validation-*
- config_name: ta
data_files:
- split: train
path: ta/train-*
- split: test
path: ta/test-*
- split: validation
path: ta/validation-*
- config_name: te
data_files:
- split: train
path: te/train-*
- split: test
path: te/test-*
- split: validation
path: te/validation-*
Dataset Card for "IndicXNLI"
Table of Contents
Dataset Description
- Homepage: https://github.com/divyanshuaggarwal/IndicXNLI
- Paper: IndicXNLI: Evaluating Multilingual Inference for Indian Languages
- Point of Contact: Divyanshu Aggarwal
Dataset Summary
INDICXNLI is similar to existing XNLI dataset in shape/form, but focusses on Indic language family. INDICXNLI include NLI data for eleven major Indic languages that includes Assamese (‘as’), Gujarat (‘gu’), Kannada (‘kn’), Malayalam (‘ml’), Marathi (‘mr’), Odia (‘or’), Punjabi (‘pa’), Tamil (‘ta’), Telugu (‘te’), Hindi (‘hi’), and Bengali (‘bn’).
Supported Tasks and Leaderboards
Tasks: Natural Language Inference
Leaderboards: Currently there is no Leaderboard for this dataset.
Languages
Assamese (as)Bengali (bn)Gujarati (gu)Kannada (kn)Hindi (hi)Malayalam (ml)Marathi (mr)Oriya (or)Punjabi (pa)Tamil (ta)Telugu (te)
Dataset Structure
Data Instances
One example from the hi dataset is given below in JSON format.
{'premise': 'अवधारणात्मक रूप से क्रीम स्किमिंग के दो बुनियादी आयाम हैं-उत्पाद और भूगोल।',
'hypothesis': 'उत्पाद और भूगोल क्रीम स्किमिंग का काम करते हैं।',
'label': 1 (neutral) }
Data Fields
premise (string): Premise Sentencehypothesis (string): Hypothesis Sentencelabel (integer): Integer label0if hypothesisentailsthe premise,2if hypothesisnegatesthe premise and1otherwise.
Data Splits
| Language | ISO 639-1 Code | Train | Test | Dev |
|---|---|---|---|---|
| Assamese | as | 392,702 | 5,010 | 2,490 |
| Bengali | bn | 392,702 | 5,010 | 2,490 |
| Gujarati | gu | 392,702 | 5,010 | 2,490 |
| Hindi | hi | 392,702 | 5,010 | 2,490 |
| Kannada | kn | 392,702 | 5,010 | 2,490 |
| Malayalam | ml | 392,702 | 5,010 | 2,490 |
| Marathi | mr | 392,702 | 5,010 | 2,490 |
| Oriya | or | 392,702 | 5,010 | 2,490 |
| Punjabi | pa | 392,702 | 5,010 | 2,490 |
| Tamil | ta | 392,702 | 5,010 | 2,490 |
| Telugu | te | 392,702 | 5,010 | 2,490 |
Dataset usage
Code snippet for using the dataset using datasets library.
from datasets import load_dataset
dataset = load_dataset("Divyanshu/indicxnli")
Dataset Creation
Machine translation of XNLI english dataset to 11 listed Indic Languages.
Curation Rationale
[More information needed]
Source Data
Initial Data Collection and Normalization
Who are the source language producers?
Human Verification Process
Considerations for Using the Data
Social Impact of Dataset
Discussion of Biases
Other Known Limitations
Dataset Curators
Divyanshu Aggarwal, Vivek Gupta, Anoop Kunchukuttan
Licensing Information
Contents of this repository are restricted to only non-commercial research purposes under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). Copyright of the dataset contents belongs to the original copyright holders.
Citation Information
If you use any of the datasets, models or code modules, please cite the following paper:
@misc{https://doi.org/10.48550/arxiv.2204.08776,
doi = {10.48550/ARXIV.2204.08776},
url = {https://arxiv.org/abs/2204.08776},
author = {Aggarwal, Divyanshu and Gupta, Vivek and Kunchukuttan, Anoop},
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}