Datasets:
				
			
			
	
			
			
	
		
		Dataset Viewer (First 5GB)
	| image
				 imagewidth (px) 35 4.75k | class_id
				 stringclasses 26
				values | split
				 stringclasses 1
				value | filename
				 stringlengths 16 20 | 
|---|---|---|---|
| 
	n03207941 | 
	train | 
	n03207941_5739.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_12026.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_1586.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_27416.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_7094.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_22748.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_21218.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_13081.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_17586.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_12140.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_19.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_16800.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_1846.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_7616.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_14354.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_4266.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_17677.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_11230.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_22267.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_3232.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_18583.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_1951.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_946.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_5772.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_13371.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_4698.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_11900.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_4067.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_10442.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_29215.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_7706.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_3164.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_3032.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_436.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_12822.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_10601.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_6523.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_11420.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_14766.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_20009.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_8061.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_10900.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_9261.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_12060.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_8443.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_3165.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_1232.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_13984.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_9256.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_23608.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_8465.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_8561.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_12188.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_3211.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_8790.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_13130.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_3739.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_556.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_11279.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_26635.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_5528.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_11165.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_10278.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_16769.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_19093.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_21430.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_17925.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_14566.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_11509.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_5899.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_7951.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_1958.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_11062.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_10359.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_15252.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_4244.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_9487.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_25587.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_4740.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_4362.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_14463.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_2781.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_17094.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_9733.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_10809.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_1673.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_9757.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_13706.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_4537.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_11325.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_8664.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_11472.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_8944.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_3777.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_14851.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_283.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_13497.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_22756.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_15142.JPEG | |
| 
	n03207941 | 
	train | 
	n03207941_21299.JPEG | 
End of preview. Expand
						in Data Studio
					
	Corruption Dataset: Spatter
Dataset Description
This dataset contains corrupted versions of ImageNet-1K images using spatter corruption. It is part of the ImageNet-C benchmark for evaluating model robustness to common image corruptions.
Dataset Structure
- Train: 1,281,167 corrupted images
- Validation: 50,000 corrupted images
- Classes: 1000 ImageNet-1K classes
- Format: Arrow (Hugging Face Datasets)
Corruption Type: Spatter
Adds spatter effects, simulating liquid splashes.
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("MarMaster/corruption-spatter")
# Access train and validation splits
train_dataset = dataset["train"]
val_dataset = dataset["validation"]
# Example usage
for example in train_dataset:
    image = example["image"]
    class_id = example["class_id"]
    filename = example["filename"]
Dataset Statistics
- Total Images: 1,331,167
- Train Images: 1,281,167
- Validation Images: 50,000
- Classes: 1000
- Image Format: RGB
- Average Image Size: Variable (ImageNet-1K standard)
Citation
If you use this dataset, please cite the original ImageNet-C paper:
@article{hendrycks2019benchmarking,
  title={Benchmarking Neural Network Robustness to Common Corruptions and Perturbations},
  author={Hendrycks, Dan and Dietterich, Tom},
  journal={Proceedings of the International Conference on Learning Representations},
  year={2019}
}
License
This dataset is released under the MIT License. The original ImageNet dataset follows its own licensing terms.
Contact
For questions or issues, please contact: marcin.osial@[your-institution].edu
- Downloads last month
- 57