Datasets:
sample
unknown |
|---|
"gASVEoMBAAAAAAB9lCiMDm1lc2hfYmFzZV9uYW1llIwEQmFzZZSMDm1lc2hfem9uZV9uYW1llIwEWm9uZZSMBm1lc2hlc5R9lIw(...TRUNCATED)
|
"gASV0oQBAAAAAAB9lCiMDm1lc2hfYmFzZV9uYW1llIwEQmFzZZSMDm1lc2hfem9uZV9uYW1llIwEWm9uZZSMBm1lc2hlc5R9lIw(...TRUNCATED)
|
"gASVsoYBAAAAAAB9lCiMDm1lc2hfYmFzZV9uYW1llIwEQmFzZZSMDm1lc2hfem9uZV9uYW1llIwEWm9uZZSMBm1lc2hlc5R9lIw(...TRUNCATED)
|
"gASVMoQBAAAAAAB9lCiMDm1lc2hfYmFzZV9uYW1llIwEQmFzZZSMDm1lc2hfem9uZV9uYW1llIwEWm9uZZSMBm1lc2hlc5R9lIw(...TRUNCATED)
|
"gASVooUBAAAAAAB9lCiMDm1lc2hfYmFzZV9uYW1llIwEQmFzZZSMDm1lc2hfem9uZV9uYW1llIwEWm9uZZSMBm1lc2hlc5R9lIw(...TRUNCATED)
|
"gASVMocBAAAAAAB9lCiMDm1lc2hfYmFzZV9uYW1llIwEQmFzZZSMDm1lc2hfem9uZV9uYW1llIwEWm9uZZSMBm1lc2hlc5R9lIw(...TRUNCATED)
|
"gASV8okBAAAAAAB9lCiMDm1lc2hfYmFzZV9uYW1llIwEQmFzZZSMDm1lc2hfem9uZV9uYW1llIwEWm9uZZSMBm1lc2hlc5R9lIw(...TRUNCATED)
|
"gASVcosBAAAAAAB9lCiMDm1lc2hfYmFzZV9uYW1llIwEQmFzZZSMDm1lc2hfem9uZV9uYW1llIwEWm9uZZSMBm1lc2hlc5R9lIw(...TRUNCATED)
|
"gASVcowBAAAAAAB9lCiMDm1lc2hfYmFzZV9uYW1llIwEQmFzZZSMDm1lc2hfem9uZV9uYW1llIwEWm9uZZSMBm1lc2hlc5R9lIw(...TRUNCATED)
|
"gASVkooBAAAAAAB9lCiMDm1lc2hfYmFzZV9uYW1llIwEQmFzZZSMDm1lc2hfem9uZV9uYW1llIwEWm9uZZSMBm1lc2hlc5R9lIw(...TRUNCATED)
|
Dataset Card
This dataset contains a single huggingface split, named 'all_samples'.
The samples contains a single huggingface feature, named called "sample".
Samples are instances of plaid.containers.sample.Sample. Mesh objects included in samples follow the CGNS standard, and can be converted in Muscat.Containers.Mesh.Mesh.
Example of commands:
from datasets import load_dataset
from plaid.bridges.huggingface_bridge import huggingface_dataset_to_plaid
hf_dataset = load_dataset("PLAID-datasets/Tensile2d", split="all_samples")
dataset, problem = huggingface_dataset_to_plaid(hf_dataset, processes_number = 4)
ids_train = problem.get_split('train_500')
ids_test = problem.get_split('test')
sample_train_0 = dataset[ids_train[0]]
sample_test_0 = dataset[ids_test[0]]
# inputs
nodes = sample_train_0.get_nodes()
elements = sample_train_0.get_elements()
nodal_tags = sample_train_0.get_nodal_tags()
for sn in ['P', 'p1', 'p2', 'p3', 'p4', 'p5']:
scalar = sample_train_0.get_scalar(sn)
# outputs
for fn in ['U1', 'U2', 'q', 'sig11', 'sig22', 'sig12']:
field = sample_train_0.get_field(fn)
for sn in ['max_von_mises', 'max_q', 'max_U2_top', 'max_sig22_top']:
scalar = sample_train_0.get_scalar(sn)
Dataset Details
Dataset Description
This dataset contains 2D quasistatic non-linear structural mechanics solutions, under geometrical variations.
A description is provided in the MMGP paper Sections 4.1 and A.2.
The variablity in the samples are 6 input scalars and the geometry (mesh). Outputs of interest are 4 scalars and 6 fields.
Seven nested training sets of sizes 8 to 500 are provided, with complete input-output data. A testing set of size 200, as well as two out-of-distribution samples, are provided, for which outputs are not provided.
Dataset created using the PLAID library and datamodel, version: 0.1.
- Language: PLAID
- License: cc-by-sa-4.0
- Owner: Safran
Dataset Sources
- Downloads last month
- 1,604

