Datasets:

Modalities:
Text
Formats:
csv
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet Duplicate
Link
stringlengths
43
43
Start Time-1
stringlengths
7
7
End Time-1
stringlengths
7
7
Start Time-2
stringlengths
7
7
End Time-2
stringlengths
7
7
https://www.youtube.com/watch?v=7V_QExUzukU
0:00:00
00:03.5
0:01:06
01:10.5
https://www.youtube.com/watch?v=vfTE69ceZCE
0:01:33
0:01:38
02:03.5
0:02:09
https://www.youtube.com/watch?v=yhzeape2s5c
0:01:48
0:01:52
02:45.5
0:02:50
https://www.youtube.com/watch?v=nAp-RIrNimo
0:00:19
0:00:26
0:02:55
0:03:00
https://www.youtube.com/watch?v=5-rxoRKpElE
0:00:00
00:04.5
0:00:09
0:00:18
https://www.youtube.com/watch?v=Zq1HddQLxuU
0:01:32
0:01:38
0:01:46
0:01:52
https://www.youtube.com/watch?v=oMAaa43U99U
01:36.5
0:01:40
01:46.5
0:01:52
https://www.youtube.com/watch?v=9xMX8O0MHw8
01:29.5
0:01:35
0:02:45
02:49.5
https://www.youtube.com/watch?v=H_PlxsE4kGU
0:02:02
0:02:05
0:04:17
04:24.0
https://www.youtube.com/watch?v=D9QXyv_Fjr4
0:00:08
0:00:16
0:01:04
0:01:12
https://www.youtube.com/watch?v=mNnSMnSX8k8
01:24.5
0:01:38
0:02:43
0:02:51
https://www.youtube.com/watch?v=jCPgocVmDvk
0:00:49
0:00:54
0:01:39
0:01:55
https://www.youtube.com/watch?v=J4l_mLmvHnk
0:00:22
0:00:26
00:55.5
0:01:00
https://www.youtube.com/watch?v=AC0b3ZPQA0E
00:32.5
0:00:39
0:01:17
0:01:29
https://www.youtube.com/watch?v=_q57evoza8Y
0:01:03
0:01:12
0:02:14
0:02:23
https://www.youtube.com/watch?v=UTnpO4rrVaY
0:01:06
0:01:14
01:33.5
0:01:38
https://www.youtube.com/watch?v=YDO9K4w-qCM
0:02:15
0:02:22
02:45.5
0:02:50
https://www.youtube.com/watch?v=f5FnLvf96qE
0:01:03
0:01:19
0:05:17
0:05:30
https://www.youtube.com/watch?v=wQYh0Bzgi8s
0:01:05
0:01:10
0:01:53
0:02:00
https://www.youtube.com/watch?v=HYhPd9mHxLo
01:23.5
0:01:30
0:01:57
0:02:06
https://www.youtube.com/watch?v=vLq3KujzbdQ
01:46.5
0:01:51
0:02:03
0:02:14
https://www.youtube.com/watch?v=eHWHSWlIeMA
0:00:00
0:00:07
0:00:29
0:00:49
https://www.youtube.com/watch?v=UGyWKJT9zsY
0:00:33
0:00:46
0:00:56
0:01:02
https://www.youtube.com/watch?v=rum2bvDLurQ
0:00:00
0:00:25
0:01:32
0:01:41
https://www.youtube.com/watch?v=C_2x08iNVk4
01:11.5
0:01:17
0:01:56
0:02:09
https://www.youtube.com/watch?v=d-zwKhYsIv4
0:00:00
0:00:10
0:01:04
0:01:09
https://www.youtube.com/watch?v=1kq0iPoA6O8
00:07.5
0:00:11
0:00:52
0:01:20
https://www.youtube.com/watch?v=wnvC7uct2Ks
00:32.5
0:00:53
0:01:36
0:01:43
https://www.youtube.com/watch?v=mVB-sb7Q0lU
01:01.5
0:01:14
0:01:31
0:01:41
https://www.youtube.com/watch?v=VGw6BRAfVlg
0:00:16
0:00:24
0:01:17
0:01:31
https://www.youtube.com/watch?v=AxPTGF706WY
0:00:47
0:00:55
01:12.8
0:01:18
https://www.youtube.com/watch?v=xdka8BEfJ_I
0:01:19
0:01:35
0:03:08
0:03:19
https://www.youtube.com/watch?v=sJzQ9ogGiL8
0:00:36
0:00:42
0:00:55
0:01:08
https://www.youtube.com/watch?v=YVezH1v__IQ
0:01:11
0:01:18
0:01:31
0:01:48
https://www.youtube.com/watch?v=xK3aYN08EM8
0:00:00
0:00:07
01:01.8
0:01:16
https://www.youtube.com/watch?v=l0wq8kBo9KM
0:00:53
0:01:06
0:01:16
0:01:30
https://www.youtube.com/watch?v=dJby8ey7jMw
0:00:13
0:00:21
00:46.8
0:00:54
https://www.youtube.com/watch?v=hw9ecQIAgYg
0:00:45
0:00:54
01:29.8
0:01:39
https://www.youtube.com/watch?v=SQ54wma-JQA
0:04:27
0:04:34
0:04:37
0:04:51
https://www.youtube.com/watch?v=avABSo6xpqg
0:00:45
0:00:58
0:00:58
0:01:15
https://www.youtube.com/watch?v=DUsUx-Hhiyo
0:00:37
0:00:43
01:03.5
0:01:13
https://www.youtube.com/watch?v=VMvmxMP5w0M
0:01:50
0:01:55
02:01.7
0:02:05
https://www.youtube.com/watch?v=VsPMOVi8THk
00:03.5
0:00:07
0:00:21
0:00:27
https://www.youtube.com/watch?v=V7rAFCxuyaM
00:03.4
0:00:07
00:14.4
0:00:21
https://www.youtube.com/watch?v=YEbQ835Zqx8
0:00:00
0:00:08
0:00:45
0:00:55
https://www.youtube.com/watch?v=YEbQ835Zqx8
0:00:27
0:00:31
0:01:10
0:01:16
https://www.youtube.com/watch?v=_4SwcdAsGEA
0:00:24
0:00:34
0:00:34
0:00:45
https://www.youtube.com/watch?v=_4SwcdAsGEA
0:01:21
0:01:28
0:02:33
0:02:38
https://www.youtube.com/watch?v=tV51izuiR0I
0:01:36
0:01:43
0:02:07
0:02:13
https://www.youtube.com/watch?v=-KSGeDUhmXc
0:01:33
0:01:43
0:01:43
0:01:57
https://www.youtube.com/watch?v=-kR7GHh9sDU
0:00:56
00:59.5
0:01:34
0:01:49
https://www.youtube.com/watch?v=SB3UuI4Tel0
0:00:00
0:00:35
0:00:54
0:01:29

RareFace-50 (from Low-Rank Head Avatar Personalization with Registers)

Dataset for Low-Rank Head Avatar Personalization with Registers. Also available on arxiv.

Project Page

Dataset Summary

RareFace-50 is a curated collection of challenging human faces intended for evaluating personalization of talking-head and avatar generation methods.

Unlike many existing face video datasets that focus primarily on celebrities and well-known public figures (e.g., television personalities), RareFace-50 deliberately targets underrepresented facial appearances, with an emphasis on:

  • Distinctive facial details (e.g., pronounced wrinkles, unique tattoos, scars, or other high-frequency details),
  • Wide variation in age and appearance,
  • High-resolution, close-up footage.

The dataset is constructed from 50 identities, each with 2 short clips, for a total of 100 clips. Source videos are high-resolution interview-style recordings (1080p, 2K, and 4K) collected from YouTube public broadcasts. The average duration of each clip is around 15 seconds.

Important:
This repository contains only metadata about the clips (YouTube links and temporal trim information) in a CSV file.


Dataset Structure

Files

The dataset is provided as a single CSV file in this repository (RareFace50.csv).

Each row corresponds to a two clip and includes:

  • A YouTube link for the source video.
  • Two start times and end times defining the clips within that video.

Timestamp format: All temporal fields are stored as strings in h:mm:ss format
(e.g., 0:00:13, 0:01:05, 1:23:45).

Suggested Schema

The exact column names may vary, but a typical schema is:

  • youtube_url (string)
    Full YouTube URL for the source video.

  • start_time (string)
    Clip start time in h:mm:ss.

  • end_time (string)
    Clip end time in h:mm:ss.

Example row:

youtube_url start_time end_time
https://www.youtube.com/watch?v=XXXXXX 0:00:12 0:00:27

How to Use

Loading the CSV

You can access the CSV directly using Python’s standard tools or datasets:

from datasets import load_dataset

ds = load_dataset("StonyBrook-CVLab/RareFace-50")
print(ds["train"][0])

If you use this dataset, please be so kind to cite us:

@inproceedings{
chakkera2025lowrank,
title={Low-Rank Head Avatar Personalization with Registers},
author={Sai Tanmay Reddy Chakkera and Aggelina Chatziagapi and Md Moniruzzaman and Chen-ping Yu and Yi-Hsuan Tsai and Dimitris Samaras},
booktitle={The Thirty-ninth Annual Conference on Neural Information Processing Systems},
year={2025},
url={(https://openreview.net/pdf?id=mhARf5VzCn)}
}
Downloads last month
7