The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
FineWeb Educational Dataset - Construction Guide
This document explains how the FineWeb Educational dataset was constructed, sampled, and processed for training DeepSeek language models.
Dataset Source
Original Dataset: HuggingFaceFW/fineweb-edu
Full Dataset Size: ~4TB (2,410 parquet files) Content Type: High-quality educational web content from Common Crawl
Sampling Strategy
Why Sampling?
The full FineWeb dataset is massive (~4TB) and would take days to download and process. We implemented Strategy 4: Single Parquet File Loading for efficient processing.
Sampling Method
- Files Selected: First 5 parquet files from the dataset
- Download Size: ~10GB (vs 4TB full dataset)
- Percentage: ~0.25% of total dataset
- Rationale: Sequential loading is most efficient with HuggingFace datasets
Files Used
data/CC-MAIN-2024-42/
βββ 000_00000.parquet (~2.3GB)
βββ 000_00001.parquet (~2.3GB)  
βββ 000_00002.parquet (~2.3GB)
βββ 000_00003.parquet (~2.3GB)
βββ 000_00004.parquet (~2.3GB)
Data Processing Pipeline
Step 1: Raw Data Loading
# Load 5 parquet files (~10GB total)
data_files = [
    "data/CC-MAIN-2024-42/000_00000.parquet",
    "data/CC-MAIN-2024-42/000_00001.parquet", 
    "data/CC-MAIN-2024-42/000_00002.parquet",
    "data/CC-MAIN-2024-42/000_00003.parquet",
    "data/CC-MAIN-2024-42/000_00004.parquet"
]
ds = load_dataset("HuggingFaceFW/fineweb-edu", 
                  data_files=data_files, 
                  split='train')
Result: 2,294,208 raw examples loaded
Step 2: Quality Filtering
def filter_by_length(example):
    text_length = len(example.get('text', ''))
    return (100 <= text_length <= 3000 and  # Length filter
            example.get('score', 0) > 0.6)   # Quality filter
ds = ds.filter(filter_by_length)
Filtering Criteria:
- Length: 100-3000 characters (educational content range)
- Quality Score: > 0.6 (high-quality content only)
- Language: English content (from language detection)
Result: 964,864 high-quality examples (42% of raw data)
Step 3: Dataset Splitting
# 80/20 train/validation split
train_val = ds.train_test_split(test_size=0.2, seed=42)
ds = {
    "train": train_val["train"],      # 80% for training
    "validation": train_val["test"]   # 20% for validation
}
Final Split:
- Training: 771,891 examples (80%)
- Validation: 192,973 examples (20%)
Step 4: Tokenization & Binary Conversion
# Process each split
for split_name, split_data in ds.items():
    # Tokenize with GPT-2 tokenizer
    tokenized = split_data.map(self.process, ...)
    
    # Convert to binary format
    all_ids = []
    for example in tokenized:
        all_ids.extend(example['ids'])
    
    # Save as binary file
    arr = np.array(all_ids, dtype=np.uint16)
    filename = f"fineweb_{split_name}.bin"
    arr.tofile(filename)
Final Dataset Statistics
File Sizes
- fineweb_train.bin: 646.95 MB (339,186,828 tokens)
- fineweb_validation.bin: 161.80 MB (84,832,287 tokens)
- Total Processed: 808.75 MB (424,019,115 tokens)
Content Distribution
- Training Examples: 758,265 (after tokenization filtering)
- Validation Examples: 189,518 (after tokenization filtering)
- Total Examples: 947,783
Quality Metrics
- Original Raw Data: 2,294,208 examples
- After Quality Filtering: 964,864 examples (42% retention)
- After Tokenization: 947,783 examples (98% of filtered)
Dataset Structure
Input Format
Each example contains:
{
  "text": "Main educational content...",
  "url": "https://example.com/article",
  "date": "2024-01-15",
  "language": "en",
  "score": 0.95
}
Processing Output
# Special tokens structure
full_text = (
    f"{self.special_tokens['content_start']} {content} {self.special_tokens['content_end']}"
    f" {self.special_tokens['url_start']} {url} {self.special_tokens['url_end']}"
    f" {self.special_tokens['date_start']} {date} {self.special_tokens['date_end']}"
)
Usage in Training
Training Script
python src/run_fineweb_training.py
Data Loading
from src.data.fineweb_processor import FineWebDataProcessor
processor = FineWebDataProcessor()
train_data = processor.load_binary_data('fineweb_train.bin')
val_data = processor.load_binary_data('fineweb_validation.bin')
Reproducibility
Random Seeds
- Dataset Split: seed=42(reproducible train/val split)
- Processing: Deterministic tokenization and filtering
File Selection
- Parquet Files: First 5 files in chronological order
- Sampling: Sequential loading (not random sampling)
Limitations & Considerations
Sampling Bias
- Chronological: Only includes content from specific time periods
- Geographic: May be biased toward certain regions/languages
- Content Type: Web content may have different characteristics than curated datasets
Quality Trade-offs
- Filtering: Aggressive filtering removes 58% of raw data
- Length: 100-3000 character limit may exclude some valuable content
- Score Threshold: 0.6 threshold is somewhat arbitrary
Future Improvements
Alternative Sampling Strategies
- Random Sampling: Load random parquet files across time periods
- Stratified Sampling: Ensure representation across different content types
- Progressive Loading: Start small, expand based on training results
Enhanced Filtering
- Content Classification: Filter by educational topic/domain
- Language Detection: Better multilingual support
- Quality Metrics: More sophisticated quality scoring
Technical Details
Tokenizer
- Type: GPT-2 tokenizer (50,257 vocabulary)
- Special Tokens: Custom tokens for content structure
- Context Window: 1024 tokens (DeepSeek architecture)
Processing Pipeline
- Parallel Processing: 8 processes for tokenization
- Memory Management: Efficient streaming for large datasets
- Error Handling: Graceful fallback for malformed examples
Storage Format
- Binary Format: .binfiles for efficient loading
- Data Type: uint16(65,536 token limit, sufficient for GPT-2 vocab)
- Compression: No compression (trade-off between size and loading speed)
Dataset Citation
If you use this processed dataset, please cite:
@dataset{fineweb_edu_processed,
  title={FineWeb Educational Dataset - 10GB Sampled (0.25% of Full Dataset)},
  author={Your Name},
  year={2024},
  url={https://huggingface.co/datasets/your-username/fineweb-edu-10gb-5parquet-processed},
  note={Processed subset of HuggingFaceFW/fineweb-edu for DeepSeek training}
}
Contact & Support
For questions about this dataset construction:
- Repository: Tiny-Deepseek
- Issues: GitHub Issues for technical problems
- Discussions: GitHub Discussions for general questions
This dataset was constructed as part of the Tiny-Deepseek project for training efficient language models on educational content.
- Downloads last month
- 2
