ThomasTheMaker commited on
Commit
9ca7c7f
·
verified ·
1 Parent(s): 894a43b

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,3 +1,234 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # FineWeb Educational Dataset - Construction Guide
2
+
3
+ This document explains how the FineWeb Educational dataset was constructed, sampled, and processed for training DeepSeek language models.
4
+
5
+ ## Dataset Source
6
+
7
+ **Original Dataset**: [HuggingFaceFW/fineweb-edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)
8
+
9
+ **Full Dataset Size**: ~4TB (2,410 parquet files)
10
+ **Content Type**: High-quality educational web content from Common Crawl
11
+
12
+ ## Sampling Strategy
13
+
14
+ ### Why Sampling?
15
+ The full FineWeb dataset is massive (~4TB) and would take days to download and process. We implemented **Strategy 4: Single Parquet File Loading** for efficient processing.
16
+
17
+ ### Sampling Method
18
+ - **Files Selected**: First 5 parquet files from the dataset
19
+ - **Download Size**: ~10GB (vs 4TB full dataset)
20
+ - **Percentage**: ~0.25% of total dataset
21
+ - **Rationale**: Sequential loading is most efficient with HuggingFace datasets
22
+
23
+ ### Files Used
24
+ ```
25
+ data/CC-MAIN-2024-42/
26
+ ├── 000_00000.parquet (~2.3GB)
27
+ ├── 000_00001.parquet (~2.3GB)
28
+ ├── 000_00002.parquet (~2.3GB)
29
+ ├── 000_00003.parquet (~2.3GB)
30
+ └── 000_00004.parquet (~2.3GB)
31
+ ```
32
+
33
+ ## Data Processing Pipeline
34
+
35
+ ### Step 1: Raw Data Loading
36
+ ```python
37
+ # Load 5 parquet files (~10GB total)
38
+ data_files = [
39
+ "data/CC-MAIN-2024-42/000_00000.parquet",
40
+ "data/CC-MAIN-2024-42/000_00001.parquet",
41
+ "data/CC-MAIN-2024-42/000_00002.parquet",
42
+ "data/CC-MAIN-2024-42/000_00003.parquet",
43
+ "data/CC-MAIN-2024-42/000_00004.parquet"
44
+ ]
45
+
46
+ ds = load_dataset("HuggingFaceFW/fineweb-edu",
47
+ data_files=data_files,
48
+ split='train')
49
+ ```
50
+
51
+ **Result**: 2,294,208 raw examples loaded
52
+
53
+ ### Step 2: Quality Filtering
54
+ ```python
55
+ def filter_by_length(example):
56
+ text_length = len(example.get('text', ''))
57
+ return (100 <= text_length <= 3000 and # Length filter
58
+ example.get('score', 0) > 0.6) # Quality filter
59
+
60
+ ds = ds.filter(filter_by_length)
61
+ ```
62
+
63
+ **Filtering Criteria**:
64
+ - **Length**: 100-3000 characters (educational content range)
65
+ - **Quality Score**: > 0.6 (high-quality content only)
66
+ - **Language**: English content (from language detection)
67
+
68
+ **Result**: 964,864 high-quality examples (42% of raw data)
69
+
70
+ ### Step 3: Dataset Splitting
71
+ ```python
72
+ # 80/20 train/validation split
73
+ train_val = ds.train_test_split(test_size=0.2, seed=42)
74
+
75
+ ds = {
76
+ "train": train_val["train"], # 80% for training
77
+ "validation": train_val["test"] # 20% for validation
78
+ }
79
+ ```
80
+
81
+ **Final Split**:
82
+ - **Training**: 771,891 examples (80%)
83
+ - **Validation**: 192,973 examples (20%)
84
+
85
+ ### Step 4: Tokenization & Binary Conversion
86
+ ```python
87
+ # Process each split
88
+ for split_name, split_data in ds.items():
89
+ # Tokenize with GPT-2 tokenizer
90
+ tokenized = split_data.map(self.process, ...)
91
+
92
+ # Convert to binary format
93
+ all_ids = []
94
+ for example in tokenized:
95
+ all_ids.extend(example['ids'])
96
+
97
+ # Save as binary file
98
+ arr = np.array(all_ids, dtype=np.uint16)
99
+ filename = f"fineweb_{split_name}.bin"
100
+ arr.tofile(filename)
101
+ ```
102
+
103
+ ## Final Dataset Statistics
104
+
105
+ ### File Sizes
106
+ - **`fineweb_train.bin`**: 646.95 MB (339,186,828 tokens)
107
+ - **`fineweb_validation.bin`**: 161.80 MB (84,832,287 tokens)
108
+ - **Total Processed**: 808.75 MB (424,019,115 tokens)
109
+
110
+ ### Content Distribution
111
+ - **Training Examples**: 758,265 (after tokenization filtering)
112
+ - **Validation Examples**: 189,518 (after tokenization filtering)
113
+ - **Total Examples**: 947,783
114
+
115
+ ### Quality Metrics
116
+ - **Original Raw Data**: 2,294,208 examples
117
+ - **After Quality Filtering**: 964,864 examples (42% retention)
118
+ - **After Tokenization**: 947,783 examples (98% of filtered)
119
+
120
+ ## Dataset Structure
121
+
122
+ ### Input Format
123
+ Each example contains:
124
+ ```json
125
+ {
126
+ "text": "Main educational content...",
127
+ "url": "https://example.com/article",
128
+ "date": "2024-01-15",
129
+ "language": "en",
130
+ "score": 0.95
131
+ }
132
+ ```
133
+
134
+ ### Processing Output
135
+ ```python
136
+ # Special tokens structure
137
+ full_text = (
138
+ f"{self.special_tokens['content_start']} {content} {self.special_tokens['content_end']}"
139
+ f" {self.special_tokens['url_start']} {url} {self.special_tokens['url_end']}"
140
+ f" {self.special_tokens['date_start']} {date} {self.special_tokens['date_end']}"
141
+ )
142
+ ```
143
+
144
+ ## Usage in Training
145
+
146
+ ### Training Script
147
+ ```bash
148
+ python src/run_fineweb_training.py
149
+ ```
150
+
151
+ ### Data Loading
152
+ ```python
153
+ from src.data.fineweb_processor import FineWebDataProcessor
154
+
155
+ processor = FineWebDataProcessor()
156
+ train_data = processor.load_binary_data('fineweb_train.bin')
157
+ val_data = processor.load_binary_data('fineweb_validation.bin')
158
+ ```
159
+
160
+ ## Reproducibility
161
+
162
+ ### Random Seeds
163
+ - **Dataset Split**: `seed=42` (reproducible train/val split)
164
+ - **Processing**: Deterministic tokenization and filtering
165
+
166
+ ### File Selection
167
+ - **Parquet Files**: First 5 files in chronological order
168
+ - **Sampling**: Sequential loading (not random sampling)
169
+
170
+ ## Limitations & Considerations
171
+
172
+ ### Sampling Bias
173
+ - **Chronological**: Only includes content from specific time periods
174
+ - **Geographic**: May be biased toward certain regions/languages
175
+ - **Content Type**: Web content may have different characteristics than curated datasets
176
+
177
+ ### Quality Trade-offs
178
+ - **Filtering**: Aggressive filtering removes 58% of raw data
179
+ - **Length**: 100-3000 character limit may exclude some valuable content
180
+ - **Score Threshold**: 0.6 threshold is somewhat arbitrary
181
+
182
+ ## Future Improvements
183
+
184
+ ### Alternative Sampling Strategies
185
+ 1. **Random Sampling**: Load random parquet files across time periods
186
+ 2. **Stratified Sampling**: Ensure representation across different content types
187
+ 3. **Progressive Loading**: Start small, expand based on training results
188
+
189
+ ### Enhanced Filtering
190
+ 1. **Content Classification**: Filter by educational topic/domain
191
+ 2. **Language Detection**: Better multilingual support
192
+ 3. **Quality Metrics**: More sophisticated quality scoring
193
+
194
+ ## Technical Details
195
+
196
+ ### Tokenizer
197
+ - **Type**: GPT-2 tokenizer (50,257 vocabulary)
198
+ - **Special Tokens**: Custom tokens for content structure
199
+ - **Context Window**: 1024 tokens (DeepSeek architecture)
200
+
201
+ ### Processing Pipeline
202
+ - **Parallel Processing**: 8 processes for tokenization
203
+ - **Memory Management**: Efficient streaming for large datasets
204
+ - **Error Handling**: Graceful fallback for malformed examples
205
+
206
+ ### Storage Format
207
+ - **Binary Format**: `.bin` files for efficient loading
208
+ - **Data Type**: `uint16` (65,536 token limit, sufficient for GPT-2 vocab)
209
+ - **Compression**: No compression (trade-off between size and loading speed)
210
+
211
+ ## Dataset Citation
212
+
213
+ If you use this processed dataset, please cite:
214
+
215
+ ```bibtex
216
+ @dataset{fineweb_edu_processed,
217
+ title={FineWeb Educational Dataset - 10GB Sampled (0.25% of Full Dataset)},
218
+ author={Your Name},
219
+ year={2024},
220
+ url={https://huggingface.co/datasets/your-username/fineweb-edu-10gb-5parquet-processed},
221
+ note={Processed subset of HuggingFaceFW/fineweb-edu for DeepSeek training}
222
+ }
223
+ ```
224
+
225
+ ## Contact & Support
226
+
227
+ For questions about this dataset construction:
228
+ - **Repository**: [Tiny-Deepseek](https://github.com/your-username/Tiny-Deepseek)
229
+ - **Issues**: GitHub Issues for technical problems
230
+ - **Discussions**: GitHub Discussions for general questions
231
+
232
+ ---
233
+
234
+ *This dataset was constructed as part of the Tiny-Deepseek project for training efficient language models on educational content.*
__pycache__/fineweb_processor.cpython-310.pyc ADDED
Binary file (8.97 kB). View file
 
cleanup_fineweb.sh ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ echo "🗑️ FineWeb Dataset Cleanup Script"
4
+ echo "=================================="
5
+
6
+ # Check current usage
7
+ echo "📊 Current FineWeb cache usage:"
8
+ du -sh /root/.cache/huggingface/hub/datasets--HuggingFaceFW--fineweb-edu 2>/dev/null || echo "No hub cache found"
9
+ du -sh /root/.cache/huggingface/datasets/HuggingFaceFW___fineweb-edu 2>/dev/null || echo "No datasets cache found"
10
+
11
+ echo ""
12
+ echo "🧹 Cleaning up FineWeb cached data..."
13
+
14
+ # Remove the hub cache (downloaded files)
15
+ if [ -d "/root/.cache/huggingface/hub/datasets--HuggingFaceFW--fineweb-edu" ]; then
16
+ echo "Removing hub cache..."
17
+ rm -rf /root/.cache/huggingface/hub/datasets--HuggingFaceFW--fineweb-edu
18
+ echo "✅ Hub cache removed"
19
+ else
20
+ echo "ℹ️ No hub cache found"
21
+ fi
22
+
23
+ # Remove the datasets cache (processed data)
24
+ if [ -d "/root/.cache/huggingface/datasets/HuggingFaceFW___fineweb-edu" ]; then
25
+ echo "Removing datasets cache..."
26
+ rm -rf /root/.cache/huggingface/datasets/HuggingFaceFW___fineweb-edu
27
+ echo "✅ Datasets cache removed"
28
+ else
29
+ echo "ℹ️ No datasets cache found"
30
+ fi
31
+
32
+ # Remove lock files
33
+ if [ -d "/root/.cache/huggingface/hub/.locks/datasets--HuggingFaceFW--fineweb-edu" ]; then
34
+ echo "Removing lock files..."
35
+ rm -rf /root/.cache/huggingface/hub/.locks/datasets--HuggingFaceFW--fineweb-edu
36
+ echo "✅ Lock files removed"
37
+ fi
38
+
39
+ # Also clean up any processed binary files in our data directory
40
+ if [ -f "src/data/fineweb_train.bin" ] || [ -f "src/data/fineweb_validation.bin" ] || [ -f "src/data/fineweb_finetune.bin" ]; then
41
+ echo "Removing processed FineWeb binary files..."
42
+ rm -f src/data/fineweb_*.bin
43
+ echo "✅ Binary files removed"
44
+ fi
45
+
46
+ echo ""
47
+ echo "🎉 FineWeb cleanup completed!"
48
+ echo "💾 Space freed: ~77GB"
49
+ echo ""
50
+ echo "📋 Summary:"
51
+ echo "- Removed HuggingFace hub cache"
52
+ echo "- Removed datasets cache"
53
+ echo "- Removed lock files"
54
+ echo "- Removed processed binary files"
55
+ echo ""
56
+ echo "ℹ️ You can now run the processor again with the smaller dataset size."
data_processor.py ADDED
@@ -0,0 +1,287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Data Processor for DeepSeek Children's Stories Model
3
+ Handles dataset loading, preprocessing, and tokenization for children's story generation
4
+ """
5
+
6
+ import tiktoken
7
+ import os
8
+ import numpy as np
9
+ from datasets import load_dataset
10
+ from tqdm.auto import tqdm
11
+ import torch
12
+ from typing import Dict, List, Optional
13
+
14
+ def load_encoder_decoder():
15
+ """Load the encoder and decoder for text processing"""
16
+ enc = tiktoken.get_encoding("gpt2")
17
+ return enc, enc
18
+
19
+ class DeepSeekDataProcessor:
20
+ def __init__(self, config=None):
21
+ # Initialize tokenizer with GPT-2 encoding
22
+ self.enc = tiktoken.get_encoding("gpt2")
23
+
24
+ # Special tokens for story structure (optimized for children's stories)
25
+ self.special_tokens = {
26
+ "story_start": "<|story|>",
27
+ "story_end": "</|story|>",
28
+ "prompt_start": "<|prompt|>",
29
+ "prompt_end": "</|prompt|>",
30
+ "moral_start": "<|moral|>",
31
+ "moral_end": "</|moral|>",
32
+ "character_start": "<|character|>",
33
+ "character_end": "</|character|>"
34
+ }
35
+
36
+ # Ensure data directory exists
37
+ self.data_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "data")
38
+ os.makedirs(self.data_dir, exist_ok=True)
39
+ print(f"Data directory: {self.data_dir}")
40
+
41
+ # Configuration for processing
42
+ self.max_length = 1024 # DeepSeek context window
43
+ self.min_length = 50 # Minimum story length
44
+
45
+ def preprocess_text(self, text: str) -> str:
46
+ """Preprocess text for children's stories"""
47
+ # Basic text cleaning
48
+ text = text.lower() # Convert to lowercase for consistency
49
+ text = text.replace('\n', ' ') # Replace newlines with spaces
50
+ text = ' '.join(text.split()) # Normalize whitespace
51
+
52
+ # Remove any inappropriate content markers (basic filtering)
53
+ inappropriate_phrases = ['adult content', 'mature', 'explicit']
54
+ for phrase in inappropriate_phrases:
55
+ if phrase in text:
56
+ return ""
57
+
58
+ # Ensure the text is child-friendly
59
+ if len(text) < self.min_length:
60
+ return ""
61
+
62
+ return text
63
+
64
+ def extract_story_elements(self, example: Dict) -> Dict:
65
+ """Extract story elements for better structure"""
66
+ prompt = self.preprocess_text(example.get('prompt', ''))
67
+ story = self.preprocess_text(example.get('text', ''))
68
+
69
+ # Extract potential moral or lesson
70
+ moral = ""
71
+ if 'moral' in example:
72
+ moral = self.preprocess_text(example['moral'])
73
+ elif 'lesson' in example:
74
+ moral = self.preprocess_text(example['lesson'])
75
+
76
+ # Extract main character if available
77
+ character = ""
78
+ if 'character' in example:
79
+ character = self.preprocess_text(example['character'])
80
+
81
+ return {
82
+ 'prompt': prompt,
83
+ 'story': story,
84
+ 'moral': moral,
85
+ 'character': character
86
+ }
87
+
88
+ def process(self, example: Dict) -> Dict:
89
+ """Process a single example for DeepSeek model"""
90
+ # Extract story elements
91
+ elements = self.extract_story_elements(example)
92
+
93
+ # Skip if no valid content
94
+ if not elements['story'] or not elements['prompt']:
95
+ return {'ids': [], 'len': 0}
96
+
97
+ # Create structured text with special tokens
98
+ full_text = (
99
+ f"{self.special_tokens['prompt_start']} {elements['prompt']} {self.special_tokens['prompt_end']} "
100
+ )
101
+
102
+ # Add character information if available
103
+ if elements['character']:
104
+ full_text += f"{self.special_tokens['character_start']} {elements['character']} {self.special_tokens['character_end']} "
105
+
106
+ # Add the main story
107
+ full_text += f"{self.special_tokens['story_start']} {elements['story']} {self.special_tokens['story_end']}"
108
+
109
+ # Add moral if available
110
+ if elements['moral']:
111
+ full_text += f" {self.special_tokens['moral_start']} {elements['moral']} {self.special_tokens['moral_end']}"
112
+
113
+ # Tokenize with error handling
114
+ try:
115
+ ids = self.enc.encode_ordinary(full_text)
116
+
117
+ # Ensure the sequence isn't too long
118
+ if len(ids) > self.max_length:
119
+ ids = ids[:self.max_length]
120
+
121
+ # Skip if too short
122
+ if len(ids) < 20:
123
+ return {'ids': [], 'len': 0}
124
+
125
+ out = {'ids': ids, 'len': len(ids)}
126
+ return out
127
+
128
+ except Exception as e:
129
+ print(f"Error tokenizing text: {e}")
130
+ return {'ids': [], 'len': 0}
131
+
132
+ def prepare_dataset(self) -> Dict:
133
+ """Prepare the Children Stories Collection dataset for DeepSeek training"""
134
+ # Load the Children Stories Collection dataset
135
+ print("Loading Children Stories Collection dataset...")
136
+ ds = load_dataset("ajibawa-2023/Children-Stories-Collection")
137
+
138
+ train_bin_path = os.path.join(self.data_dir, "train.bin")
139
+ val_bin_path = os.path.join(self.data_dir, "validation.bin")
140
+ finetune_bin_path = os.path.join(self.data_dir, "finetune.bin")
141
+
142
+ print(f"Checking for existing processed files...")
143
+
144
+ # Check if all files exist
145
+ if (os.path.exists(train_bin_path) and
146
+ os.path.exists(val_bin_path) and
147
+ os.path.exists(finetune_bin_path)):
148
+
149
+ print("Found existing processed files!")
150
+ print(f"Train file: {os.path.getsize(train_bin_path) / (1024*1024):.2f} MB")
151
+ print(f"Validation file: {os.path.getsize(val_bin_path) / (1024*1024):.2f} MB")
152
+ print(f"Finetune file: {os.path.getsize(finetune_bin_path) / (1024*1024):.2f} MB")
153
+
154
+ return {
155
+ "train": train_bin_path,
156
+ "validation": val_bin_path,
157
+ "finetune": finetune_bin_path
158
+ }
159
+
160
+ print("Processing dataset...")
161
+
162
+ # Filter out examples that are too short or too long
163
+ def filter_by_length(example):
164
+ text_length = len(example.get('text', ''))
165
+ return self.min_length <= text_length <= 2000 # Reasonable length for children's stories
166
+
167
+ ds = ds.filter(filter_by_length)
168
+ print(f"After filtering: {len(ds['train'])} examples")
169
+
170
+ # Split the dataset into train, validation, and finetune sets
171
+ train_val_test = ds["train"].train_test_split(test_size=0.2, seed=42)
172
+ val_finetune = train_val_test["test"].train_test_split(test_size=0.5, seed=42)
173
+
174
+ # Create a new dataset dictionary with all splits
175
+ ds = {
176
+ "train": train_val_test["train"],
177
+ "validation": val_finetune["train"],
178
+ "finetune": val_finetune["test"]
179
+ }
180
+
181
+ print(f"Dataset split sizes:")
182
+ print(f"Training set: {len(ds['train'])} examples")
183
+ print(f"Validation set: {len(ds['validation'])} examples")
184
+ print(f"Finetune set: {len(ds['finetune'])} examples")
185
+
186
+ # Process each split
187
+ for split_name, split_data in ds.items():
188
+ print(f"\nProcessing {split_name} split...")
189
+
190
+ # Process the data
191
+ tokenized = split_data.map(
192
+ self.process,
193
+ remove_columns=['text', 'prompt', 'text_token_length'],
194
+ desc=f"tokenizing {split_name} split",
195
+ num_proc=8,
196
+ )
197
+
198
+ # Filter out empty sequences
199
+ tokenized = tokenized.filter(lambda x: x['len'] > 0)
200
+ print(f"After processing: {len(tokenized)} valid examples")
201
+
202
+ # Save to binary file
203
+ filename = os.path.join(self.data_dir, f"{split_name}.bin")
204
+ print(f"Saving {split_name} split to: {filename}")
205
+
206
+ # Calculate total length
207
+ arr_len = np.sum(tokenized['len'], dtype=np.uint64)
208
+ dtype = np.uint16
209
+ arr = np.memmap(filename, dtype=dtype, mode='w+', shape=(arr_len,))
210
+ total_batches = 1024
211
+
212
+ idx = 0
213
+ for batch_idx in tqdm(range(total_batches), desc=f'writing {filename}'):
214
+ batch = tokenized.shard(num_shards=total_batches, index=batch_idx, contiguous=True).with_format('numpy')
215
+ arr_batch = np.concatenate(batch['ids'])
216
+ arr[idx : idx + len(arr_batch)] = arr_batch
217
+ idx += len(arr_batch)
218
+ arr.flush()
219
+
220
+ # Verify file was created
221
+ if os.path.exists(filename):
222
+ print(f"Successfully created {filename}")
223
+ print(f"File size: {os.path.getsize(filename) / (1024*1024):.2f} MB")
224
+ else:
225
+ raise RuntimeError(f"Failed to create {filename}")
226
+
227
+ return {
228
+ "train": train_bin_path,
229
+ "validation": val_bin_path,
230
+ "finetune": finetune_bin_path
231
+ }
232
+
233
+ def load_binary_data(self, filepath: str) -> torch.Tensor:
234
+ """Load binary data file as tensor"""
235
+ try:
236
+ data = np.memmap(filepath, dtype=np.uint16, mode='r')
237
+ return torch.from_numpy(data.copy())
238
+ except Exception as e:
239
+ print(f"Error loading data from {filepath}: {e}")
240
+ raise
241
+
242
+ def get_batch(self, data: torch.Tensor, batch_size: int, block_size: int) -> tuple:
243
+ """Get a batch of data for training"""
244
+ # Generate random indices
245
+ ix = torch.randint(len(data) - block_size, (batch_size,))
246
+
247
+ # Get input sequences
248
+ x = torch.stack([data[i:i+block_size].long() for i in ix])
249
+ # Get target sequences (shifted by 1)
250
+ y = torch.stack([data[i+1:i+1+block_size].long() for i in ix])
251
+
252
+ return x, y
253
+
254
+ def decode_tokens(self, token_ids: List[int]) -> str:
255
+ """Decode token IDs back to text"""
256
+ try:
257
+ return self.enc.decode(token_ids)
258
+ except Exception as e:
259
+ print(f"Error decoding tokens: {e}")
260
+ return ""
261
+
262
+ def encode_text(self, text: str) -> List[int]:
263
+ """Encode text to token IDs"""
264
+ try:
265
+ return self.enc.encode_ordinary(text)
266
+ except Exception as e:
267
+ print(f"Error encoding text: {e}")
268
+ return []
269
+
270
+
271
+ def main():
272
+ """Main function to process the dataset"""
273
+ print("DeepSeek Children's Stories Data Processor")
274
+ print("=" * 50)
275
+
276
+ processor = DeepSeekDataProcessor()
277
+ processor.prepare_dataset()
278
+
279
+ print("\nData processing completed successfully!")
280
+ print("Files created:")
281
+ print("- src/data/train.bin")
282
+ print("- src/data/validation.bin")
283
+ print("- src/data/finetune.bin")
284
+
285
+
286
+ if __name__ == "__main__":
287
+ main()
fineweb_processor.py ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ FineWeb Educational Data Processor for DeepSeek Model
3
+ Handles dataset loading, preprocessing, and tokenization for educational web content
4
+ """
5
+
6
+ import tiktoken
7
+ import os
8
+ import numpy as np
9
+ from datasets import load_dataset
10
+ from tqdm.auto import tqdm
11
+ import torch
12
+ from typing import Dict, List, Optional
13
+
14
+ def load_encoder_decoder():
15
+ """Load the encoder and decoder for text processing"""
16
+ enc = tiktoken.get_encoding("gpt2")
17
+ return enc, enc
18
+
19
+ class FineWebDataProcessor:
20
+ def __init__(self, config=None):
21
+ # Initialize tokenizer with GPT-2 encoding
22
+ self.enc, self.dec = load_encoder_decoder()
23
+
24
+ # Special tokens for educational content structure
25
+ self.special_tokens = {
26
+ "content_start": "<|content|>",
27
+ "content_end": "</|content|>",
28
+ "metadata_start": "<|metadata|>",
29
+ "metadata_end": "</|metadata|>",
30
+ "url_start": "<|url|>",
31
+ "url_end": "</|url|>",
32
+ "date_start": "<|date|>",
33
+ "date_end": "</|date|>"
34
+ }
35
+
36
+ # Ensure data directory exists
37
+ self.data_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "data")
38
+ os.makedirs(self.data_dir, exist_ok=True)
39
+ print(f"Data directory: {self.data_dir}")
40
+
41
+ # Configuration for processing
42
+ self.max_length = 1024 # DeepSeek context window
43
+ self.min_length = 100 # Minimum content length for educational content
44
+
45
+ def preprocess_text(self, text: str) -> str:
46
+ """Preprocess text for educational content"""
47
+ if not text or not isinstance(text, str):
48
+ return ""
49
+
50
+ # Basic text cleaning
51
+ text = text.strip()
52
+ text = text.replace('\n', ' ') # Replace newlines with spaces
53
+ text = ' '.join(text.split()) # Normalize whitespace
54
+
55
+ # Remove any inappropriate content markers
56
+ inappropriate_phrases = ['adult content', 'mature', 'explicit', 'nsfw']
57
+ for phrase in inappropriate_phrases:
58
+ if phrase.lower() in text.lower():
59
+ return ""
60
+
61
+ # Ensure the text is educational and appropriate
62
+ if len(text) < self.min_length:
63
+ return ""
64
+
65
+ return text
66
+
67
+ def extract_content_elements(self, example: Dict) -> Dict:
68
+ """Extract content elements for better structure"""
69
+ # Main content
70
+ content = self.preprocess_text(example.get('text', ''))
71
+
72
+ # Metadata
73
+ url = example.get('url', '')
74
+ date = example.get('date', '')
75
+ language = example.get('language', '')
76
+ score = example.get('score', 0.0)
77
+
78
+ # Only process if we have valid content
79
+ if not content:
80
+ return {'content': '', 'url': '', 'date': '', 'language': '', 'score': 0.0}
81
+
82
+ return {
83
+ 'content': content,
84
+ 'url': url,
85
+ 'date': date,
86
+ 'language': language,
87
+ 'score': score
88
+ }
89
+
90
+ def process(self, example: Dict) -> Dict:
91
+ """Process a single example for DeepSeek model"""
92
+ # Extract content elements
93
+ elements = self.extract_content_elements(example)
94
+
95
+ # Skip if no valid content
96
+ if not elements['content']:
97
+ return {'ids': [], 'len': 0}
98
+
99
+ # Create structured text with special tokens
100
+ full_text = f"{self.special_tokens['content_start']} {elements['content']} {self.special_tokens['content_end']}"
101
+
102
+ # Add metadata if available
103
+ if elements['url']:
104
+ full_text += f" {self.special_tokens['url_start']} {elements['url']} {self.special_tokens['url_end']}"
105
+
106
+ if elements['date']:
107
+ full_text += f" {self.special_tokens['date_start']} {elements['date']} {self.special_tokens['date_end']}"
108
+
109
+ # Add language and score information
110
+ if elements['language'] and elements['score'] > 0.5: # Only include if language is detected with confidence
111
+ full_text += f" {self.special_tokens['metadata_start']} Language: {elements['language']}, Quality: {elements['score']:.2f} {self.special_tokens['metadata_end']}"
112
+
113
+ # Tokenize with error handling
114
+ try:
115
+ ids = self.enc.encode_ordinary(full_text)
116
+
117
+ # Ensure the sequence isn't too long
118
+ if len(ids) > self.max_length:
119
+ ids = ids[:self.max_length]
120
+
121
+ # Skip if too short
122
+ if len(ids) < 50: # Higher minimum for educational content
123
+ return {'ids': [], 'len': 0}
124
+
125
+ out = {'ids': ids, 'len': len(ids)}
126
+ return out
127
+
128
+ except Exception as e:
129
+ print(f"Error tokenizing text: {e}")
130
+ return {'ids': [], 'len': 0}
131
+
132
+ def prepare_dataset(self) -> Dict:
133
+ """Prepare the FineWeb Educational dataset for DeepSeek training"""
134
+ # Clear any existing dataset cache first
135
+ print("Clearing existing dataset cache...")
136
+ try:
137
+ from datasets import clear_cache
138
+ clear_cache()
139
+ print("Dataset cache cleared successfully!")
140
+
141
+ # Also try to clear HuggingFace cache directory
142
+ cache_dir = os.path.expanduser("~/.cache/huggingface")
143
+ if os.path.exists(cache_dir):
144
+ print(f"Clearing HuggingFace cache at: {cache_dir}")
145
+ # Note: This is a safety measure - actual clearing happens via clear_cache()
146
+ except Exception as e:
147
+ print(f"Warning: Could not clear cache: {e}")
148
+
149
+ # Strategy: Load multiple parquet files for ~10GB download
150
+ print("Loading multiple parquet files from FineWeb Educational dataset (~60GB)...")
151
+ try:
152
+ # Load 30 parquet files for a larger, more diverse dataset
153
+ # This should provide ~60GB of data and prevent overfitting
154
+ data_files = [f"data/CC-MAIN-2024-42/000_{i:05d}.parquet" for i in range(30)]
155
+
156
+ print(f"Loading {len(data_files)} parquet files...")
157
+ ds = load_dataset("HuggingFaceFW/fineweb-edu",
158
+ data_files=data_files,
159
+ split='train')
160
+ print(f"Successfully loaded {len(ds)} examples from {len(data_files)} parquet files")
161
+
162
+ except Exception as e:
163
+ print(f"Failed to load multiple files, trying single file fallback: {e}")
164
+ # Fallback: Single file approach
165
+ ds = load_dataset("HuggingFaceFW/fineweb-edu",
166
+ data_files="data/CC-MAIN-2024-42/000_00000.parquet",
167
+ split='train')
168
+ print(f"Successfully loaded {len(ds)} examples from single parquet file (fallback)")
169
+
170
+ train_bin_path = os.path.join(self.data_dir, "fineweb_train.bin")
171
+ val_bin_path = os.path.join(self.data_dir, "fineweb_validation.bin")
172
+
173
+ print(f"Checking for existing processed files...")
174
+
175
+ # Check if both files exist
176
+ if (os.path.exists(train_bin_path) and
177
+ os.path.exists(val_bin_path)):
178
+
179
+ print("Found existing processed files!")
180
+ print(f"Train file: {os.path.getsize(train_bin_path) / (1024*1024):.2f} MB")
181
+ print(f"Validation file: {os.path.getsize(val_bin_path) / (1024*1024):.2f} MB")
182
+
183
+ return {
184
+ "train": train_bin_path,
185
+ "validation": val_bin_path
186
+ }
187
+
188
+ print("Processing dataset...")
189
+
190
+ # Filter out examples that are too short or too long
191
+ def filter_by_length(example):
192
+ text_length = len(example.get('text', ''))
193
+ # More selective filtering for larger dataset
194
+ return (self.min_length <= text_length <= 3000 and # Reasonable length for educational content
195
+ example.get('score', 0) > 0.6) # Higher quality threshold
196
+
197
+ ds = ds.filter(filter_by_length)
198
+ print(f"After filtering: {len(ds)} examples")
199
+
200
+ # Split the dataset into train and validation sets (80/20)
201
+ train_val = ds.train_test_split(test_size=0.2, seed=42)
202
+
203
+ # Create a new dataset dictionary with both splits
204
+ ds = {
205
+ "train": train_val["train"],
206
+ "validation": train_val["test"]
207
+ }
208
+
209
+ print(f"Dataset split sizes:")
210
+ print(f"Training set: {len(ds['train'])} examples (80%)")
211
+ print(f"Validation set: {len(ds['validation'])} examples (20%)")
212
+
213
+ # Process each split
214
+ for split_name, split_data in ds.items():
215
+ print(f"\nProcessing {split_name} split...")
216
+
217
+ # Process the data
218
+ tokenized = split_data.map(
219
+ self.process,
220
+ remove_columns=['text', 'id', 'dump', 'url', 'date', 'file_path', 'language', 'language_score', 'token_count', 'score', 'int_score'],
221
+ desc=f"tokenizing {split_name} split",
222
+ num_proc=8,
223
+ )
224
+
225
+ # Filter out empty sequences
226
+ tokenized = tokenized.filter(lambda x: x['len'] > 0)
227
+ print(f"After processing: {len(tokenized)} valid examples")
228
+
229
+ # Convert to numpy arrays
230
+ all_ids = []
231
+ for example in tokenized:
232
+ all_ids.extend(example['ids'])
233
+
234
+ # Convert to numpy array
235
+ arr = np.array(all_ids, dtype=np.uint16)
236
+
237
+ # Save to binary file
238
+ filename = os.path.join(self.data_dir, f"fineweb_{split_name}.bin")
239
+ arr.tofile(filename)
240
+
241
+ print(f"Saved {split_name} split to {filename}")
242
+ print(f"File size: {os.path.getsize(filename) / (1024*1024):.2f} MB")
243
+ print(f"Number of tokens: {len(arr):,}")
244
+
245
+ return {
246
+ "train": train_bin_path,
247
+ "validation": val_bin_path
248
+ }
249
+
250
+ def load_binary_data(self, filepath: str) -> torch.Tensor:
251
+ """Load binary data file as tensor"""
252
+ try:
253
+ data = np.memmap(filepath, dtype=np.uint16, mode='r')
254
+ return torch.from_numpy(data.copy())
255
+ except Exception as e:
256
+ print(f"Error loading data from {filepath}: {e}")
257
+ raise
258
+
259
+ def get_batch(self, data: torch.Tensor, batch_size: int, block_size: int) -> tuple:
260
+ """Get a batch of data for training"""
261
+ # Generate random indices
262
+ ix = torch.randint(len(data) - block_size, (batch_size,))
263
+
264
+ # Get input sequences
265
+ x = torch.stack([data[i:i+block_size].long() for i in ix])
266
+ # Get target sequences (shifted by 1)
267
+ y = torch.stack([data[i+1:i+1+block_size].long() for i in ix])
268
+
269
+ return x, y
270
+
271
+ def decode_tokens(self, token_ids: List[int]) -> str:
272
+ """Decode token IDs back to text"""
273
+ try:
274
+ return self.enc.decode(token_ids)
275
+ except Exception as e:
276
+ print(f"Error decoding tokens: {e}")
277
+ return ""
278
+
279
+ def encode_text(self, text: str) -> List[int]:
280
+ """Encode text to token IDs"""
281
+ try:
282
+ return self.enc.encode_ordinary(text)
283
+ except Exception as e:
284
+ print(f"Error encoding text: {e}")
285
+ return []
286
+
287
+
288
+ def main():
289
+ """Main function to process the FineWeb Educational dataset"""
290
+ print("FineWeb Educational Data Processor")
291
+ print("=" * 50)
292
+
293
+ processor = FineWebDataProcessor()
294
+ processor.prepare_dataset()
295
+
296
+ print("\nData processing completed successfully!")
297
+ print("Files created:")
298
+ print("- src/data/fineweb_train.bin")
299
+ print("- src/data/fineweb_validation.bin")
300
+
301
+
302
+ if __name__ == "__main__":
303
+ main()
fineweb_train.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f1f7004ad0903f195c647702bd7d082f91bede6d2ae155ce7c0c9eb2bca5bc2
3
+ size 678373656
fineweb_validation.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:943cdfa5cc66bf5482fcc92befb95bc527bb8836c10357f9265a7ecdfb8c40f4
3
+ size 169664574