latex
stringlengths
37
394
image
imagewidth (px)
63
733
\begin{align*}\sum_{n=1}^{\infty}d(n, N)q^n + \sum_{n=1}^{N} \left[\begin{matrix} N \\ n \end{matrix} \right]\frac{q^{n(n+1)/2}}{1-q^n}\frac{(-q)_n}{(q)_n} = \frac{1}{2} \left\{\frac{(-q)_N}{(q)_N} - 1\right\} + \sum_{n=1}^{N} \frac{(-q)_n}{(q)_n}\frac{q^n}{1-q^n}\end{align*}
\begin{align*}d(p,\bar p)={1\over 2}(p+\bar p +2)(p+1)(\bar p+1)\end{align*}
\begin{align*}\langle p_{\lambda}, p_{\mu} \rangle_\alpha = \delta_{\lambda,\mu} z_{\lambda}\alpha^{l(\lambda)}\, ,\end{align*}
\begin{align*}\textsf{E}f(x_{1}\varepsilon_{1}, x_{2}\varepsilon_{2}, \cdots, x_{n}\varepsilon_{n})=\textsf{E}f(-x_{1}\varepsilon_{1}, x_{2}\varepsilon_{2}, \cdots, x_{n}\varepsilon_{n})\end{align*}
\begin{align*}{\cal L}_{int}^{'} = \frac{f}{2M} \bar{\psi} [i \gamma_{5} \gamma_{\mu} \partial_{\mu} \phi + \frac{1}{2} \sigma_{\mu \nu} (\partial_{\mu} \omega_{\nu}- \partial_{\nu} \omega_{\mu})] \psi \end{align*}