Datasets:
ArXiv:
License:
Update dataset card for ReT-M2KR: Add task category, links, and sample usage
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,16 +1,31 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
| 4 |
|
| 5 |
-
|
| 6 |
-
- we exlude any data from MSMARCO, as it does not contain query images;
|
| 7 |
-
- we add passage images to OVEN, InfoSeek, E-VQA, and OKVQA. Refer to the paper for more details.
|
| 8 |
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
- **Paper:** [Recurrence-Enhanced Vision-and-Language Transformers for Robust Multimodal Document Retrieval](https://www.arxiv.org/abs/2503.01980) (CVPR 2025)
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
## Download images
|
| 16 |
1. Initialize git LFS
|
|
@@ -35,20 +50,74 @@ cd ../images/evqa_kb
|
|
| 35 |
cat evqa-kb-img-{00000..00241}.tar.gz | tar xzf -
|
| 36 |
```
|
| 37 |
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
`jsonl/rag/kb_infoseek525k.jsonl` is the knowledge base used to execute experiments on Retrieval-Augmented Generation on the InfoSeek benchmark. The field `passage_image_path` contains a relative path to the Wikipedia image associated with a given passage. The Wikipedia images can be downloaded from the [OVEN](https://huggingface.co/datasets/ychenNLP/oven/blob/main/all_wikipedia_images.tar) repository.
|
| 41 |
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
```
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
}
|
| 54 |
```
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
+
task_categories:
|
| 4 |
+
- visual-document-retrieval
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
tags:
|
| 8 |
+
- multimodal
|
| 9 |
+
- retrieval
|
| 10 |
+
- image-text-retrieval
|
| 11 |
+
- rag
|
| 12 |
+
- vqa
|
| 13 |
+
- m2kr
|
| 14 |
+
- m-beir
|
| 15 |
+
- vision-language
|
| 16 |
---
|
| 17 |
|
| 18 |
+
# ReT-M2KR Dataset
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
This repository contains the dataset used to train and evaluate **ReT-2: Recurrence Meets Transformers for Universal Multimodal Retrieval**. ReT-2 is a unified retrieval model designed to support multimodal queries (composed of images and text) and search across multimodal document collections where text and images coexist.
|
| 21 |
|
| 22 |
+
Paper: [Recurrence Meets Transformers for Universal Multimodal Retrieval](https://huggingface.co/papers/2509.08897)
|
| 23 |
+
Code: https://github.com/aimagelab/ReT-2
|
|
|
|
| 24 |
|
| 25 |
+
This dataset is a modified version of the original [M2KR](https://huggingface.co/datasets/BByrneLab/multi_task_multi_modal_knowledge_retrieval_benchmark_M2KR) benchmark, specifically adapted for ReT-2. The modifications include:
|
| 26 |
+
- Excluding any data from MSMARCO, as it does not contain query images.
|
| 27 |
+
- Adding passage images to OVEN, InfoSeek, E-VQA, and OKVQA.
|
| 28 |
+
Refer to the paper for more details.
|
| 29 |
|
| 30 |
## Download images
|
| 31 |
1. Initialize git LFS
|
|
|
|
| 50 |
cat evqa-kb-img-{00000..00241}.tar.gz | tar xzf -
|
| 51 |
```
|
| 52 |
|
| 53 |
+
## Sample Usage
|
| 54 |
|
| 55 |
+
Here's an example of how to use ReT-2 with 🤗's Transformers to compute query-passage similarity:
|
|
|
|
| 56 |
|
| 57 |
+
```python
|
| 58 |
+
from src.models import Ret2Model
|
| 59 |
+
import requests
|
| 60 |
+
from PIL import Image
|
| 61 |
+
from io import BytesIO
|
| 62 |
+
import torch
|
| 63 |
+
import torch.nn.functional as F
|
| 64 |
+
|
| 65 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 66 |
+
|
| 67 |
+
headers = {
|
| 68 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
query_img_url = 'https://upload.wikimedia.org/wikipedia/commons/8/84/Ghirlandina_%28Modena%29.jpg'
|
| 72 |
+
response = requests.get(query_img_url, headers=headers)
|
| 73 |
+
query_image = Image.open(BytesIO(response.content)).convert('RGB')
|
| 74 |
+
query_text = 'Where is this building located?'
|
| 75 |
+
|
| 76 |
+
passage_img_url = 'https://upload.wikimedia.org/wikipedia/commons/0/09/Absidi_e_Ghirlandina.jpg'
|
| 77 |
+
response = requests.get(query_img_url, headers=headers)
|
| 78 |
+
passage_image = Image.open(BytesIO(response.content)).convert('RGB')
|
| 79 |
+
passage_text = (
|
| 80 |
+
"The Ghirlandina is the bell tower of the Cathedral of Modena, in Modena, Italy. "
|
| 81 |
+
"It is 86.12 metres (282.7 ft) high and is the symbol of the city. "
|
| 82 |
+
"It was built in Romanesque style in the 12th century and is part of a UNESCO World Heritage Site."
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
model = Ret2Model.from_pretrained('aimagelab/ReT2-M2KR-ColBERT-SigLIP2-ViT-L', device_map=device)
|
| 86 |
|
| 87 |
+
query_txt_inputs = model.tokenizer([query_text], return_tensors='pt').to(device)
|
| 88 |
+
query_img_inputs = model.image_processor([query_image], return_tensors='pt').to(device)
|
| 89 |
+
passage_txt_inputs = model.tokenizer([passage_text], return_tensors='pt').to(device)
|
| 90 |
+
passage_img_inputs = model.image_processor([passage_image], return_tensors='pt').to(device)
|
| 91 |
|
| 92 |
+
with torch.inference_mode():
|
| 93 |
+
query_feats = model.get_ret_features(
|
| 94 |
+
input_ids=query_txt_inputs.input_ids,
|
| 95 |
+
attention_mask=query_txt_inputs.attention_mask,
|
| 96 |
+
pixel_values=query_img_inputs.pixel_values
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
passage_feats = model.get_ret_features(
|
| 100 |
+
input_ids=passage_txt_inputs.input_ids,
|
| 101 |
+
attention_mask=passage_txt_inputs.attention_mask,
|
| 102 |
+
pixel_values=passage_img_inputs.pixel_values
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
sim = F.normalize(query_feats, p=2, dim=-1) @ F.normalize(passage_feats, p=2, dim=-1).T
|
| 106 |
+
|
| 107 |
+
print(f"query-passage similarity: {sim.item():.3f}")
|
| 108 |
```
|
| 109 |
+
|
| 110 |
+
## RAG - InfoSeek
|
| 111 |
+
`jsonl/rag/kb_infoseek525k.jsonl` is the knowledge base used to execute experiments on Retrieval-Augmented Generation on the InfoSeek benchmark. The field `passage_image_path` contains a relative path to the Wikipedia image associated with a given passage. The Wikipedia images can be downloaded from the [OVEN](https://huggingface.co/datasets/ychenNLP/oven/blob/main/all_wikipedia_images.tar) repository.
|
| 112 |
+
|
| 113 |
+
## Citation
|
| 114 |
+
|
| 115 |
+
If you happen to use our work, please cite it with the following BibTeX:
|
| 116 |
+
```bibtex
|
| 117 |
+
@article{caffagni2025recurrencemeetstransformers,
|
| 118 |
+
title={{Recurrence Meets Transformers for Universal Multimodal Retrieval}},
|
| 119 |
+
author={Davide Caffagni and Sara Sarto and Marcella Cornia and Lorenzo Baraldi and Rita Cucchiara},
|
| 120 |
+
journal={arXiv preprint arXiv:2509.08897},
|
| 121 |
+
year={2025}
|
| 122 |
}
|
| 123 |
```
|