Create LyNoS.py
#1
by
dbouget
- opened
LyNoS.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""LyNoS: Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding."""
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
import datasets
|
| 5 |
+
|
| 6 |
+
_DESCRIPTION = """\
|
| 7 |
+
LyNoS: Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding.
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
_HOMEPAGE = "https://github.com/raidionics/LyNoS"
|
| 11 |
+
|
| 12 |
+
_LICENSE = "MIT"
|
| 13 |
+
|
| 14 |
+
_CITATION = """\
|
| 15 |
+
@article{bouget2023mediastinal,
|
| 16 |
+
title={Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding},
|
| 17 |
+
author={Bouget, David and Pedersen, Andr{\'e} and Vanel, Johanna and Leira, Haakon O and Lang{\o}, Thomas},
|
| 18 |
+
journal={Computer Methods in Biomechanics and Biomedical Engineering: Imaging \& Visualization},
|
| 19 |
+
volume={11},
|
| 20 |
+
number={1},
|
| 21 |
+
pages={44--58},
|
| 22 |
+
year={2023},
|
| 23 |
+
publisher={Taylor \& Francis}
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
_URLS = [
|
| 29 |
+
{
|
| 30 |
+
"ct": f"data/Pat{i}/Pat{i}_data.nii.gz",
|
| 31 |
+
"azygos": f"data/Pat{i}/Pat{i}_labels_Azygos.nii.gz",
|
| 32 |
+
"brachiocephalicveins": f"data/Pat{i}/Pat{i}_labels_BrachiocephalicVeins.nii.gz",
|
| 33 |
+
"esophagus": f"data/Pat{i}/Pat{i}_labels_Esophagus.nii.gz",
|
| 34 |
+
"lymphnodes": f"data/Pat{i}/Pat{i}_labels_LymphNodes.nii.gz",
|
| 35 |
+
"subclaviancarotidarteries": f"data/Pat{i}/Pat{i}_labels_SubCarArt.nii.gz",
|
| 36 |
+
}
|
| 37 |
+
for i in range(1, 15)
|
| 38 |
+
]
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class LyNoS(datasets.GeneratorBasedBuilder):
|
| 42 |
+
"""A segmentation benchmark dataset for enlarged lymph nodes in patients with primary lung cancer."""
|
| 43 |
+
|
| 44 |
+
VERSION = datasets.Version("1.0.0")
|
| 45 |
+
|
| 46 |
+
def _info(self):
|
| 47 |
+
features = datasets.Features(
|
| 48 |
+
{
|
| 49 |
+
"ct": datasets.Value("string"),
|
| 50 |
+
"lymphnodes": datasets.Value("string"),
|
| 51 |
+
}
|
| 52 |
+
)
|
| 53 |
+
return datasets.DatasetInfo(
|
| 54 |
+
description=_DESCRIPTION,
|
| 55 |
+
features=features,
|
| 56 |
+
homepage=_HOMEPAGE,
|
| 57 |
+
license=_LICENSE,
|
| 58 |
+
citation=_CITATION,
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
def _split_generators(self, dl_manager):
|
| 62 |
+
data_dirs = dl_manager.download(_URLS)
|
| 63 |
+
return [
|
| 64 |
+
datasets.SplitGenerator(
|
| 65 |
+
name=datasets.Split.TEST,
|
| 66 |
+
# These kwargs will be passed to _generate_examples
|
| 67 |
+
gen_kwargs={
|
| 68 |
+
"data_dirs": data_dirs,
|
| 69 |
+
},
|
| 70 |
+
),
|
| 71 |
+
]
|
| 72 |
+
|
| 73 |
+
def _generate_examples(self, data_dirs):
|
| 74 |
+
for key, patient in enumerate(data_dirs):
|
| 75 |
+
yield key, patient
|