|
|
--- |
|
|
viewer: false |
|
|
tags: |
|
|
- ocr |
|
|
- document-processing |
|
|
- dots-ocr |
|
|
- multilingual |
|
|
- markdown |
|
|
- uv-script |
|
|
- generated |
|
|
--- |
|
|
|
|
|
# Document OCR using dots.ocr |
|
|
|
|
|
This dataset contains OCR results from images in [NationalLibraryOfScotland/Scottish-School-Exam-Papers](https://huggingface.co/datasets/NationalLibraryOfScotland/Scottish-School-Exam-Papers) using DoTS.ocr, a compact 1.7B multilingual model. |
|
|
|
|
|
## Processing Details |
|
|
|
|
|
- **Source Dataset**: [NationalLibraryOfScotland/Scottish-School-Exam-Papers](https://huggingface.co/datasets/NationalLibraryOfScotland/Scottish-School-Exam-Papers) |
|
|
- **Model**: [rednote-hilab/dots.ocr](https://huggingface.co/rednote-hilab/dots.ocr) |
|
|
- **Number of Samples**: 10 |
|
|
- **Processing Time**: 1.6 min |
|
|
- **Processing Date**: 2025-10-07 14:23 UTC |
|
|
|
|
|
### Configuration |
|
|
|
|
|
- **Image Column**: `image` |
|
|
- **Output Column**: `markdown` |
|
|
- **Dataset Split**: `train` |
|
|
- **Batch Size**: 16 |
|
|
- **Prompt Mode**: layout-all |
|
|
- **Max Model Length**: 8,192 tokens |
|
|
- **Max Output Tokens**: 8,192 |
|
|
- **GPU Memory Utilization**: 80.0% |
|
|
|
|
|
## Model Information |
|
|
|
|
|
DoTS.ocr is a compact multilingual document parsing model that excels at: |
|
|
- π **100+ Languages** - Multilingual document support |
|
|
- π **Table extraction** - Structured data recognition |
|
|
- π **Formulas** - Mathematical notation preservation |
|
|
- π **Layout-aware** - Reading order and structure preservation |
|
|
- β‘ **Fast inference** - 2-3x faster than native HF with vLLM |
|
|
- π― **Compact** - Only 1.7B parameters |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
The dataset contains all original columns plus: |
|
|
- `markdown`: The extracted text in markdown format |
|
|
- `inference_info`: JSON list tracking all OCR models applied to this dataset |
|
|
|
|
|
## Usage |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
import json |
|
|
|
|
|
# Load the dataset |
|
|
dataset = load_dataset("{output_dataset_id}", split="train") |
|
|
|
|
|
# Access the markdown text |
|
|
for example in dataset: |
|
|
print(example["markdown"]) |
|
|
break |
|
|
|
|
|
# View all OCR models applied to this dataset |
|
|
inference_info = json.loads(dataset[0]["inference_info"]) |
|
|
for info in inference_info: |
|
|
print(f"Column: {info['column_name']} - Model: {info['model_id']}") |
|
|
``` |
|
|
|
|
|
## Reproduction |
|
|
|
|
|
This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) DoTS OCR script: |
|
|
|
|
|
```bash |
|
|
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \ |
|
|
NationalLibraryOfScotland/Scottish-School-Exam-Papers \ |
|
|
<output-dataset> \ |
|
|
--image-column image \ |
|
|
--batch-size 16 \ |
|
|
--prompt-mode layout-all \ |
|
|
--max-model-len 8192 \ |
|
|
--max-tokens 8192 \ |
|
|
--gpu-memory-utilization 0.8 |
|
|
``` |
|
|
|
|
|
## Performance |
|
|
|
|
|
- **Processing Speed**: ~0.1 images/second |
|
|
- **GPU Configuration**: vLLM with 80% GPU memory utilization |
|
|
|
|
|
Generated with π€ [UV Scripts](https://huggingface.co/uv-scripts) |
|
|
|