The dataset viewer is not available for this split.
Error code:   StreamingRowsError
Exception:    UnicodeDecodeError
Message:      'utf-8' codec can't decode byte 0xc7 in position 1: invalid continuation byte
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise
                  return get_rows(
                File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator
                  return func(*args, **kwargs)
                File "/src/services/worker/src/worker/utils.py", line 77, in get_rows
                  rows_plus_one = list(itertools.islice(ds, rows_max_number + 1))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2285, in __iter__
                  for key, example in ex_iterable:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 302, in __iter__
                  for key, pa_table in self.generate_tables_fn(**gen_kwags):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/csv/csv.py", line 188, in _generate_tables
                  csv_file_reader = pd.read_csv(file, iterator=True, dtype=dtype, **self.config.pd_read_csv_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/streaming.py", line 75, in wrapper
                  return function(*args, download_config=download_config, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 1213, in xpandas_read_csv
                  return pd.read_csv(xopen(filepath_or_buffer, "rb", download_config=download_config), **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1026, in read_csv
                  return _read(filepath_or_buffer, kwds)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 620, in _read
                  parser = TextFileReader(filepath_or_buffer, **kwds)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1620, in __init__
                  self._engine = self._make_engine(f, self.engine)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1898, in _make_engine
                  return mapping[engine](f, **self.options)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/c_parser_wrapper.py", line 93, in __init__
                  self._reader = parsers.TextReader(src, **kwds)
                File "parsers.pyx", line 574, in pandas._libs.parsers.TextReader.__cinit__
                File "parsers.pyx", line 663, in pandas._libs.parsers.TextReader._get_header
                File "parsers.pyx", line 874, in pandas._libs.parsers.TextReader._tokenize_rows
                File "parsers.pyx", line 891, in pandas._libs.parsers.TextReader._check_tokenize_status
                File "parsers.pyx", line 2053, in pandas._libs.parsers.raise_parser_error
              UnicodeDecodeError: 'utf-8' codec can't decode byte 0xc7 in position 1: invalid continuation byteNeed help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
T-SYNTH
Paper: T-SYNTH: A Knowledge-Based Dataset of Synthetic Breast Images
T-SYNTH is a synthetic digital breast tomosynthesis (DBT) dataset with four breast fibroglandular density distributions imaged using Monte Carlo x-ray simulations with the publicly available Virtual Imaging Clinical Trial for Regulatory Evaluation (VICTRE) toolkit.
Dataset Details
The dataset has the following characteristics:
- Breast density: dense, heterogeneously dense, scattered, fatty
- Mass radius (mm): 5.00, 7.00, 9.00
- Mass density: 1.0, 1.06, 1.1 (ratio of mass radiodensity to that of fibroglandular tissue)
Dataset Description
- Curated by: Christopher Wiedeman, Anastasiia Sarmakeeva, Elena Sizikova, Daniil Filienko, Miguel Lago, Jana Gut Delfino, Aldo Badano
- License: Creative Commons 1.0 Universal License (CC0)
Data Acquisition Details
Imaging Modality: Paired 2D digital mammography (DM) and 3D digital breast tomosynthesis (DBT) images. The DBT images are projected into C-VIEW via the method of (Klein, 2023).
Manufacturer and Model: Replica of the Siemens detector based on MC-GPU (Badal and Badano, 2009).
Demographics: All breast phantoms are synthetic and do not represent real human subjects.
Cohort Description: 9,000 synthetic digital breast tomosynthesis (DBT) samples, distributed across four breast density categories:
| Breast Density | Fatty | Scattered | Hetero | Dense | Total | 
|---|---|---|---|---|---|
| Les.-free / Les.-present | 1350/1350 | 1350/1350 | 900/900 | 900/900 | 4500/4500 | 
Annotation Protocols: Lesion masks and bounding boxes were generated automatically from the phantom.
Data Format and Structure: Image files are in .raw format.
Dataset Sources
- Code: https://github.com/DIDSR/tsynth-release
- Arxiv: https://arxiv.org/abs/2507.04038
- Poster: https://github.com/DIDSR/tsynth-release/blob/main/images/poster.pdf
Intended Use
T-SYNTH is intended to facilitate testing of AI with pre-computed synthetic digital breast tomosynthesis (DBT) data, complementing the M-SYNTH synthetic mammography dataset.
Ethical Considerations
This work is using synthetically generated data and does not include any real patient-identifiable information. Publication of synthetic data aims to promote transparency, reproducibility, and fairness in medical AI research. We recommend avoiding training models only on synthetic data without appropriate validation.
Dataset Structure
Directory layout:
T-SYNTH/data/
βββ cview
βββ embed_metadata
βββ pretrained_models
βββ results
βββ volumes_subset
Descriptions:
- cview/-- contains T-SYNTH C-VIEW images.
- embed_metadata/-- Configuration files needed to reproduce experiments.
- pretrained_models/-- Pretrained models for- DBT,- DMand- diffusionexperiments to reproduce results from the paper. Note to reproduce you need files from- embed_metadata/.
- results/-- Output data and plots used in the paper (see T-SYNTH repository). Description for each experiment could be found here.
- volumes_subset/-- example of volumetric data. The full data set can be downloaded via the following instructions.
The data is organized by lesion size, breast density and lesion density.  Folder names follow the convention:
   output_cview_det_Victre/device_data_VICTREPhantoms_spic_[LESION_DENSITY]/[BREAST_DENSITY]/2/[LESION_SIZE]/SIM.zip.
Example path in volumes_subset:
device_data_VICTREPhantoms_spic_1.1/fatty/2/5.0/SIM/D2_5.0_fatty.1/1/
βββ reconstruction1.loc        # Lesion coordinates
βββ reconstruction1.mhd        # Metadata (raw format)
βββ reconstruction1.raw        # Raw image data
βββ reconstruction1_mask.h5    # Pixel-level segmentation masks for lesions and tissues
How to use it
The description how to use it could be found here.
Citation
@article{t-synth,
  title={{T-SYNTH}: A Knowledge-Based Dataset of Synthetic Breast Images},
  author={Christopher Wiedeman, Anastasiia Sarmakeeva, Elena Sizikova, Daniil Filienko, Miguel Lago, Jana G. Delfino, Aldo Badano},
  journal={MICCAI Open Data},
  volume={},
  pages={},
  year={2025},
  url={https://huggingface.co/papers/2507.04038}
}
Related Links
- Downloads last month
- 85
