Dataset Viewer
Auto-converted to Parquet
id
stringlengths
12
12
date
stringdate
2022-01-01 00:00:00
2025-03-30 00:00:00
state
stringclasses
37 values
value
float64
0
315
category
stringclasses
3 values
REC-00851488
2022-03-20
Ebonyi
118.42
B
REC-00387964
2023-12-07
Enugu
212.94
B
REC-00511133
2024-08-11
Katsina
113.15
B
REC-00563931
2024-06-18
Osun
15.07
A
REC-00980604
2022-05-28
Niger
107.23
A
REC-00022932
2024-07-30
Katsina
22.79
A
REC-00267853
2024-05-13
Niger
120.39
B
REC-00264473
2024-05-05
Sokoto
101.63
B
REC-00117984
2023-08-17
Rivers
118.38
A
REC-00359798
2023-03-05
Adamawa
139.87
A
REC-00900533
2023-07-09
Lagos
78.57
C
REC-00409194
2022-05-05
Taraba
49.18
A
REC-00370068
2023-08-13
Yobe
147.06
C
REC-00149321
2022-07-30
Cross River
58.44
A
REC-00291495
2023-01-03
Katsina
125.81
A
REC-00244852
2023-01-15
Lagos
101.28
A
REC-00449074
2023-05-08
Sokoto
75.03
A
REC-00109724
2022-02-20
Rivers
180.91
C
REC-00319414
2023-05-28
Plateau
52.88
A
REC-00710354
2024-08-25
Ebonyi
108.52
A
REC-00902701
2022-06-26
Ekiti
119.57
B
REC-00643638
2023-02-03
Kwara
37.53
A
REC-00325657
2024-01-02
Bauchi
79.93
A
REC-00446533
2024-09-25
Ebonyi
96.86
C
REC-00882612
2024-11-17
Bauchi
163.96
A
REC-00721016
2022-02-11
Osun
128.17
B
REC-00309923
2025-01-01
Oyo
0
A
REC-00238001
2024-11-21
Katsina
118.66
C
REC-00142739
2022-10-05
FCT
139.43
B
REC-00023545
2024-06-24
Borno
27.39
A
REC-00522790
2023-07-18
Borno
100.2
A
REC-00750234
2024-02-14
Ogun
157.23
A
REC-00984696
2022-09-05
Bayelsa
129.51
C
REC-00704160
2024-03-06
Ekiti
59.98
A
REC-00906280
2023-01-11
Anambra
148.57
A
REC-00242371
2022-11-22
Ebonyi
74.95
C
REC-00201322
2025-01-31
Ekiti
0
C
REC-00421317
2023-05-07
Enugu
114.09
C
REC-00493890
2023-07-17
Ekiti
133.04
A
REC-00067780
2023-02-16
Osun
106.76
A
REC-00751268
2022-10-02
Kaduna
94.9
B
REC-00299293
2023-11-29
Ogun
89.79
A
REC-00020509
2023-03-10
Niger
157.4
B
REC-00946981
2024-04-02
Taraba
43.31
B
REC-00858707
2025-02-20
Kwara
102.55
B
REC-00192999
2024-07-09
Kwara
107.53
C
REC-00725414
2024-06-13
Jigawa
66.95
B
REC-00316898
2022-11-17
Borno
96.11
C
REC-00173309
2023-06-05
Ondo
80.96
A
REC-00942833
2024-01-27
Oyo
84.36
A
REC-00427406
2024-11-10
Gombe
84.41
A
REC-00986495
2025-03-15
Nasarawa
85.28
A
REC-00446815
2022-01-01
Oyo
80.76
A
REC-00546345
2023-03-08
Lagos
104.55
A
REC-00113635
2023-01-30
Kwara
110.56
A
REC-00206780
2025-01-02
Kebbi
63.29
C
REC-00044193
2023-06-22
Rivers
99.56
C
REC-00298647
2022-02-12
Kogi
118.33
A
REC-00500433
2024-12-23
Anambra
179.73
A
REC-00489823
2025-01-28
Nasarawa
89.56
B
REC-00659248
2024-07-22
Lagos
16.66
B
REC-00678571
2024-02-01
Edo
95.77
B
REC-00744881
2022-04-12
Kogi
11.23
A
REC-00435610
2023-10-18
Ondo
96.98
C
REC-00564855
2024-02-20
Oyo
103.48
A
REC-00495646
2024-01-25
Oyo
51.96
B
REC-00249342
2023-05-20
Edo
114.62
C
REC-00602616
2024-12-29
Ondo
48.92
B
REC-00868673
2022-12-13
Oyo
146.67
A
REC-00095843
2024-12-17
Ogun
95.01
B
REC-00103659
2025-01-13
Yobe
51.78
C
REC-00415905
2023-02-18
Bayelsa
100.77
C
REC-00020279
2024-06-13
Akwa Ibom
127.75
B
REC-00816365
2023-01-26
Niger
91.91
C
REC-00649350
2023-09-15
Nasarawa
22.83
C
REC-00193899
2023-09-10
Rivers
144.96
A
REC-00208120
2024-03-05
Sokoto
123.32
A
REC-00462305
2025-01-17
Oyo
225.72
B
REC-00917446
2022-06-09
Nasarawa
46.88
A
REC-00548498
2022-10-21
Taraba
121.08
B
REC-00629212
2024-02-10
Adamawa
135.61
B
REC-00090925
2024-01-29
Rivers
88.46
B
REC-00046132
2025-02-24
Kebbi
121.27
A
REC-00880661
2024-05-03
FCT
68.55
B
REC-00442667
2024-10-20
Sokoto
77.39
C
REC-00675367
2025-03-20
Ekiti
25.5
A
REC-00955285
2025-03-18
Abia
0
A
REC-00319284
2024-11-20
Abia
129.36
A
REC-00305035
2023-02-17
Plateau
71.61
A
REC-00929439
2024-07-11
Anambra
154.93
A
REC-00012035
2022-07-26
FCT
89.25
C
REC-00414485
2023-12-15
Rivers
118.37
B
REC-00918800
2024-01-26
Kebbi
137.86
C
REC-00622565
2022-04-14
Anambra
42.47
A
REC-00699919
2024-09-20
Kogi
112.49
C
REC-00671010
2022-03-16
Benue
126.16
B
REC-00467545
2024-02-17
Ekiti
122.34
A
REC-00930564
2023-12-06
Plateau
118.39
B
REC-00758689
2023-06-07
Adamawa
130.59
A
REC-00093462
2022-11-11
Sokoto
13.81
A
End of preview. Expand in Data Studio

Nigeria Agriculture – Training Programs

Dataset Description

Synthetic Extension Services & Technology data for Nigeria agriculture sector.

Category: Extension Services & Technology
Rows: 90,000
Format: CSV, Parquet
License: MIT
Synthetic: Yes (generated using reference data from FAO, NBS, NiMet, FMARD)

Dataset Structure

Schema

  • id: string
  • date: string
  • state: string
  • value: float
  • category: string

Sample Data

| id           | date       | state   |   value | category   |
|:-------------|:-----------|:--------|--------:|:-----------|
| REC-00851488 | 2022-03-20 | Ebonyi  |  118.42 | B          |
| REC-00387964 | 2023-12-07 | Enugu   |  212.94 | B          |
| REC-00511133 | 2024-08-11 | Katsina |  113.15 | B          |
| REC-00563931 | 2024-06-18 | Osun    |   15.07 | A          |
| REC-00980604 | 2022-05-28 | Niger   |  107.23 | A          |

Data Generation Methodology

This dataset was synthetically generated using:

  1. Reference Sources:

    • FAO (Food and Agriculture Organization) - crop yields, production data
    • NBS (National Bureau of Statistics, Nigeria) - farm characteristics, surveys
    • NiMet (Nigerian Meteorological Agency) - weather patterns
    • FMARD (Federal Ministry of Agriculture and Rural Development) - extension guides
    • IITA (International Institute of Tropical Agriculture) - agronomic research
  2. Domain Constraints:

    • Crop calendars and phenology (planting/harvest windows)
    • Agro-ecological zone characteristics (Sahel, Sudan Savanna, Guinea Savanna, Rainforest)
    • Nigeria-specific realities (smallholder dominance, market dynamics, conflict zones)
    • Statistical distributions matching national agricultural patterns
  3. Quality Assurance:

    • Distribution testing (KS test, chi-square)
    • Correlation validation (rainfall-yield, fertilizer-yield, yield-price)
    • Causal consistency (DAG-based generation)
    • Multi-scale coherence (farm → state aggregations)
    • Ethical considerations (representative, unbiased)

See QUALITY_ASSURANCE.md in the repository for full methodology.

Use Cases

  • Machine Learning: Yield prediction, price forecasting, pest detection, supply chain optimization
  • Policy Analysis: Agricultural program evaluation, subsidy impact assessment, food security planning
  • Research: Climate-agriculture interactions, market dynamics, technology adoption patterns
  • Education: Teaching agricultural economics, data science applications in agriculture

Limitations

  • Synthetic data: While grounded in real distributions, individual records are not real observations
  • Simplified dynamics: Some complex interactions (e.g., multi-generational pest populations) are simplified
  • Temporal scope: Covers 2022-2025; may not reflect longer-term trends or future climate scenarios
  • Spatial resolution: State/LGA level; does not capture micro-level heterogeneity within localities

Citation

If you use this dataset, please cite:

@dataset{nigeria_agriculture_2025,
  title = {Nigeria Agriculture – Training Programs},
  author = {Electric Sheep Africa},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/datasets/electricsheepafrica/nigerian_agriculture_training_programs}
}

Related Datasets

This dataset is part of the Nigeria Agriculture & Food Systems collection:

Contact

For questions, feedback, or collaboration:

Changelog

Version 1.0.0 (October 2025)

  • Initial release
  • 90,000 synthetic records
  • Quality-assured using FAO/NBS/NiMet reference data
Downloads last month
18

Collection including electricsheepafrica/nigerian_agriculture_training_programs