Datasets:
Commit
·
84df3eb
1
Parent(s):
df0c4ed
Convert dataset to Parquet (#2)
Browse files- Convert dataset to Parquet (8f3028acd62f35553fa92d9cf541eb68d23b7ccd)
- Add extractive data files (6958faa6cf2e2fb2b33dbad376304accd30bd86a)
- Delete loading script (5ee2de3c67b3c9cd8e1c52282ea8215e9abdbbb2)
- Delete legacy dataset_infos.json (116f04f85f8fe2f5a892665c0134e56e4ef56860)
- README.md +27 -10
- abstractive/test-00000-of-00001.parquet +3 -0
- abstractive/train-00000-of-00001.parquet +3 -0
- abstractive/validation-00000-of-00001.parquet +3 -0
- aquamuse.py +0 -154
- dataset_infos.json +0 -1
- extractive/test-00000-of-00001.parquet +3 -0
- extractive/train-00000-of-00001.parquet +3 -0
- extractive/validation-00000-of-00001.parquet +3 -0
README.md
CHANGED
|
@@ -39,16 +39,16 @@ dataset_info:
|
|
| 39 |
dtype: string
|
| 40 |
splits:
|
| 41 |
- name: train
|
| 42 |
-
num_bytes:
|
| 43 |
num_examples: 6253
|
| 44 |
- name: test
|
| 45 |
-
num_bytes:
|
| 46 |
num_examples: 811
|
| 47 |
- name: validation
|
| 48 |
-
num_bytes:
|
| 49 |
num_examples: 661
|
| 50 |
-
download_size:
|
| 51 |
-
dataset_size:
|
| 52 |
- config_name: extractive
|
| 53 |
features:
|
| 54 |
- name: query
|
|
@@ -59,16 +59,33 @@ dataset_info:
|
|
| 59 |
dtype: string
|
| 60 |
splits:
|
| 61 |
- name: train
|
| 62 |
-
num_bytes:
|
| 63 |
num_examples: 6253
|
| 64 |
- name: test
|
| 65 |
-
num_bytes:
|
| 66 |
num_examples: 811
|
| 67 |
- name: validation
|
| 68 |
-
num_bytes:
|
| 69 |
num_examples: 661
|
| 70 |
-
download_size:
|
| 71 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
---
|
| 73 |
|
| 74 |
# Dataset Card for AQuaMuSe
|
|
|
|
| 39 |
dtype: string
|
| 40 |
splits:
|
| 41 |
- name: train
|
| 42 |
+
num_bytes: 6434893
|
| 43 |
num_examples: 6253
|
| 44 |
- name: test
|
| 45 |
+
num_bytes: 843165
|
| 46 |
num_examples: 811
|
| 47 |
- name: validation
|
| 48 |
+
num_bytes: 689093
|
| 49 |
num_examples: 661
|
| 50 |
+
download_size: 5167854
|
| 51 |
+
dataset_size: 7967151
|
| 52 |
- config_name: extractive
|
| 53 |
features:
|
| 54 |
- name: query
|
|
|
|
| 59 |
dtype: string
|
| 60 |
splits:
|
| 61 |
- name: train
|
| 62 |
+
num_bytes: 6434893
|
| 63 |
num_examples: 6253
|
| 64 |
- name: test
|
| 65 |
+
num_bytes: 843165
|
| 66 |
num_examples: 811
|
| 67 |
- name: validation
|
| 68 |
+
num_bytes: 689093
|
| 69 |
num_examples: 661
|
| 70 |
+
download_size: 5162151
|
| 71 |
+
dataset_size: 7967151
|
| 72 |
+
configs:
|
| 73 |
+
- config_name: abstractive
|
| 74 |
+
data_files:
|
| 75 |
+
- split: train
|
| 76 |
+
path: abstractive/train-*
|
| 77 |
+
- split: test
|
| 78 |
+
path: abstractive/test-*
|
| 79 |
+
- split: validation
|
| 80 |
+
path: abstractive/validation-*
|
| 81 |
+
- config_name: extractive
|
| 82 |
+
data_files:
|
| 83 |
+
- split: train
|
| 84 |
+
path: extractive/train-*
|
| 85 |
+
- split: test
|
| 86 |
+
path: extractive/test-*
|
| 87 |
+
- split: validation
|
| 88 |
+
path: extractive/validation-*
|
| 89 |
---
|
| 90 |
|
| 91 |
# Dataset Card for AQuaMuSe
|
abstractive/test-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0233791433515f5e906da847e3a808e157f8a1bb3891ae68126476f8c95ddf24
|
| 3 |
+
size 543352
|
abstractive/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:13484e28ade720920ee06fb1e1c4e5be4e9bb7ce95e73625aef5883a667dc4ed
|
| 3 |
+
size 4177513
|
abstractive/validation-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7c1fa26da92681958b9ebe263b95918b144902bdb7dce3672b1cf9520317ecef
|
| 3 |
+
size 446989
|
aquamuse.py
DELETED
|
@@ -1,154 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
"""AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)"""
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
import os
|
| 19 |
-
from os import listdir
|
| 20 |
-
from os.path import isfile, join
|
| 21 |
-
|
| 22 |
-
import tensorflow as tf
|
| 23 |
-
|
| 24 |
-
import datasets
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
_CITATION = """\
|
| 28 |
-
@misc{kulkarni2020aquamuse,
|
| 29 |
-
title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization},
|
| 30 |
-
author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie},
|
| 31 |
-
year={2020},
|
| 32 |
-
eprint={2010.12694},
|
| 33 |
-
archivePrefix={arXiv},
|
| 34 |
-
primaryClass={cs.CL}
|
| 35 |
-
}
|
| 36 |
-
"""
|
| 37 |
-
|
| 38 |
-
_DESCRIPTION = """AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)"""
|
| 39 |
-
|
| 40 |
-
_HOMEPAGE = "https://github.com/google-research-datasets/aquamuse"
|
| 41 |
-
|
| 42 |
-
_LICENSE = ""
|
| 43 |
-
|
| 44 |
-
zipped_data_url = "https://github.com/google-research-datasets/aquamuse/raw/main/v2/aquamuse_v2.zip"
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
class Aquamuse(datasets.GeneratorBasedBuilder):
|
| 48 |
-
"""Dataset for Query-based Multi-Document Summarization"""
|
| 49 |
-
|
| 50 |
-
VERSION = datasets.Version("2.3.0")
|
| 51 |
-
|
| 52 |
-
BUILDER_CONFIGS = [
|
| 53 |
-
datasets.BuilderConfig(
|
| 54 |
-
name="abstractive", version=VERSION, description="Abstractive query-based multi-document summarization"
|
| 55 |
-
),
|
| 56 |
-
datasets.BuilderConfig(
|
| 57 |
-
name="extractive", version=VERSION, description="Extractive query-based multi-document summarization"
|
| 58 |
-
),
|
| 59 |
-
]
|
| 60 |
-
|
| 61 |
-
# DEFAULT_CONFIG_NAME = "abstractive" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 62 |
-
|
| 63 |
-
def _info(self):
|
| 64 |
-
features = datasets.Features(
|
| 65 |
-
{
|
| 66 |
-
"query": datasets.Value("string"),
|
| 67 |
-
"input_urls": datasets.Sequence(datasets.Value("string")),
|
| 68 |
-
"target": datasets.Value("string"),
|
| 69 |
-
}
|
| 70 |
-
)
|
| 71 |
-
|
| 72 |
-
return datasets.DatasetInfo(
|
| 73 |
-
description=_DESCRIPTION,
|
| 74 |
-
features=features,
|
| 75 |
-
supervised_keys=None,
|
| 76 |
-
homepage=_HOMEPAGE,
|
| 77 |
-
license=_LICENSE,
|
| 78 |
-
citation=_CITATION,
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
def _split_generators(self, dl_manager):
|
| 82 |
-
"""Returns SplitGenerators."""
|
| 83 |
-
|
| 84 |
-
if self.config.name == "abstractive":
|
| 85 |
-
data_dir = dl_manager.download_and_extract(zipped_data_url)
|
| 86 |
-
return [
|
| 87 |
-
datasets.SplitGenerator(
|
| 88 |
-
name=datasets.Split.TRAIN,
|
| 89 |
-
# These kwargs will be passed to _generate_examples
|
| 90 |
-
gen_kwargs={
|
| 91 |
-
"filepath": os.path.join(data_dir, "v2.3/abstractive/train/"),
|
| 92 |
-
"split": "train",
|
| 93 |
-
},
|
| 94 |
-
),
|
| 95 |
-
datasets.SplitGenerator(
|
| 96 |
-
name=datasets.Split.TEST,
|
| 97 |
-
# These kwargs will be passed to _generate_examples
|
| 98 |
-
gen_kwargs={
|
| 99 |
-
"filepath": os.path.join(data_dir, "v2.3/abstractive/test/"),
|
| 100 |
-
"split": "test",
|
| 101 |
-
},
|
| 102 |
-
),
|
| 103 |
-
datasets.SplitGenerator(
|
| 104 |
-
name=datasets.Split.VALIDATION,
|
| 105 |
-
# These kwargs will be passed to _generate_examples
|
| 106 |
-
gen_kwargs={
|
| 107 |
-
"filepath": os.path.join(data_dir, "v2.3/abstractive/dev/"),
|
| 108 |
-
"split": "dev",
|
| 109 |
-
},
|
| 110 |
-
),
|
| 111 |
-
]
|
| 112 |
-
|
| 113 |
-
else:
|
| 114 |
-
data_dir = dl_manager.download_and_extract(zipped_data_url)
|
| 115 |
-
return [
|
| 116 |
-
datasets.SplitGenerator(
|
| 117 |
-
name=datasets.Split.TRAIN,
|
| 118 |
-
# These kwargs will be passed to _generate_examples
|
| 119 |
-
gen_kwargs={
|
| 120 |
-
"filepath": os.path.join(data_dir, "v2.3/extractive/train/"),
|
| 121 |
-
"split": "train",
|
| 122 |
-
},
|
| 123 |
-
),
|
| 124 |
-
datasets.SplitGenerator(
|
| 125 |
-
name=datasets.Split.TEST,
|
| 126 |
-
# These kwargs will be passed to _generate_examples
|
| 127 |
-
gen_kwargs={
|
| 128 |
-
"filepath": os.path.join(data_dir, "v2.3/extractive/test/"),
|
| 129 |
-
"split": "test",
|
| 130 |
-
},
|
| 131 |
-
),
|
| 132 |
-
datasets.SplitGenerator(
|
| 133 |
-
name=datasets.Split.VALIDATION,
|
| 134 |
-
# These kwargs will be passed to _generate_examples
|
| 135 |
-
gen_kwargs={
|
| 136 |
-
"filepath": os.path.join(data_dir, "v2.3/extractive/dev/"),
|
| 137 |
-
"split": "dev",
|
| 138 |
-
},
|
| 139 |
-
),
|
| 140 |
-
]
|
| 141 |
-
|
| 142 |
-
def _generate_examples(self, filepath, split):
|
| 143 |
-
"""Yields examples."""
|
| 144 |
-
filepath = [join(filepath, f) for f in listdir(filepath) if isfile(join(filepath, f))]
|
| 145 |
-
filepath = sorted(filepath)
|
| 146 |
-
raw_dataset = tf.data.TFRecordDataset(filepath)
|
| 147 |
-
for id_, raw_record in enumerate(raw_dataset):
|
| 148 |
-
example = tf.train.Example()
|
| 149 |
-
example.ParseFromString(raw_record.numpy())
|
| 150 |
-
yield id_, {
|
| 151 |
-
"query": example.features.feature["query"].bytes_list.value[0].decode(),
|
| 152 |
-
"input_urls": example.features.feature["input_urls"].bytes_list.value[0].decode().split("<EOD>"),
|
| 153 |
-
"target": example.features.feature["target"].bytes_list.value[0].decode(),
|
| 154 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset_infos.json
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
{"abstractive": {"description": "AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)", "citation": "@misc{kulkarni2020aquamuse,title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization}, author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie}, year={2020}, eprint={2010.12694}, archivePrefix={arXiv}, primaryClass={cs.CL}}", "homepage": "https://github.com/google-research-datasets/aquamuse", "license": "", "features": {"query": {"dtype": "string", "id": null, "_type": "Value"}, "input_urls": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "target": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "aquamuse", "config_name": "abstractive", "version": {"version_str": "2.3.0", "description": null, "major": 2, "minor": 3, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 6434909, "num_examples": 6253, "dataset_name": "aquamuse"}, "test": {"name": "test", "num_bytes": 843181, "num_examples": 811, "dataset_name": "aquamuse"}, "validation": {"name": "validation", "num_bytes": 689109, "num_examples": 661, "dataset_name": "aquamuse"}}, "download_checksums": {"https://github.com/google-research-datasets/aquamuse/raw/main/v2/aquamuse_v2.zip": {"num_bytes": 7755161, "checksum": "f2b4d9523031a986e545a7c0fdc8180670519696340d09179a39514fc76466d0"}}, "download_size": 7755161, "post_processing_size": null, "dataset_size": 7967199, "size_in_bytes": 15722360}, "extractive": {"description": "AQuaMuSe is a novel scalable approach to automatically mine dual query based multi-document summarization datasets for extractive and abstractive summaries using question answering dataset (Google Natural Questions) and large document corpora (Common Crawl)", "citation": "@misc{kulkarni2020aquamuse,title={AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization}, author={Sayali Kulkarni and Sheide Chammas and Wan Zhu and Fei Sha and Eugene Ie}, year={2020}, eprint={2010.12694}, archivePrefix={arXiv}, primaryClass={cs.CL}}", "homepage": "https://github.com/google-research-datasets/aquamuse", "license": "", "features": {"query": {"dtype": "string", "id": null, "_type": "Value"}, "input_urls": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "target": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "aquamuse", "config_name": "extractive", "version": {"version_str": "2.3.0", "description": null, "major": 2, "minor": 3, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 6434909, "num_examples": 6253, "dataset_name": "aquamuse"}, "test": {"name": "test", "num_bytes": 843181, "num_examples": 811, "dataset_name": "aquamuse"}, "validation": {"name": "validation", "num_bytes": 689109, "num_examples": 661, "dataset_name": "aquamuse"}}, "download_checksums": {"https://github.com/google-research-datasets/aquamuse/raw/main/v2/aquamuse_v2.zip": {"num_bytes": 7755161, "checksum": "f2b4d9523031a986e545a7c0fdc8180670519696340d09179a39514fc76466d0"}}, "download_size": 7755161, "post_processing_size": null, "dataset_size": 7967199, "size_in_bytes": 15722360}}
|
|
|
|
|
|
extractive/test-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1380d318b80ebab447002b05ccd69faf58ba9e431af41179181273c420f784e1
|
| 3 |
+
size 543635
|
extractive/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:24fb5984380b3319a1824bcb623eda558835c3142c2107930c97956c029ee1ab
|
| 3 |
+
size 4172824
|
extractive/validation-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:db41f77100bb9746fc39052a3377ff5af0f52fa26a79ce84548146850162839a
|
| 3 |
+
size 445692
|