You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

UrduSpeech

Dataset Summary

UrduSpeech is a high-quality multi-style speech corpus for Urdu and Kashmiri languages, designed for text-to-speech (TTS), automatic speech recognition (ASR), and expressive speech synthesis tasks. This dataset contains professionally recorded audio with diverse speaking styles, emotional expressions, and gender representation.

Dataset Composition

  • Languages: Urdu, Kashmiri
  • Total Samples: ~51.6K audio-text pairs
    • Train: 46.5K samples
    • Test: 5.17K samples
  • Dataset Size: 28.9 GB
  • Audio Quality: High-quality studio recordings
  • Gender Diversity: Male and Female speakers
  • Speaking Styles: Conversational (CONV), Fear (FEAR), Wikipedia (WIKI), Book narration (BOOK), and more

Source

This dataset is derived from AI4Bharat's Rasa Dataset, specifically the Urdu and Kashmiri language subsets.

Use Cases

This dataset is ideal for:

  • 🔊 Text-to-Speech (TTS) - Train high-quality Urdu/Kashmiri speech synthesis models
  • 🎤 Automatic Speech Recognition (ASR) - Develop robust speech-to-text systems
  • 🎭 Expressive Speech Synthesis - Generate speech with different styles and emotions
  • 👥 Multi-Speaker Models - Build gender-aware voice systems
  • 📚 Domain-Specific TTS - Train models for conversational, narrative, or formal speech
  • 🧠 Emotion Recognition - Develop systems to detect emotional expression in speech
  • 🎯 Style Transfer - Learn to generate speech in different speaking styles

Data Fields

Field Type Description
filename string Unique identifier for the audio sample (e.g., URD_F_CONV_00045)
text string Urdu/Kashmiri transcription text
language string Language label (Urdu/Kashmiri)
gender string Speaker gender (Male/Female)
style string Speaking style (CONV, FEAR, WIKI, BOOK, etc.)
duration string Audio duration in seconds
wav_path string Original file path reference
audio audio Audio data object

Speaking Styles

The dataset includes multiple speaking styles to enable expressive TTS:

  • CONV (Conversational): Natural, everyday speech patterns
  • FEAR (Fearful): Emotional expression conveying fear or anxiety
  • WIKI (Wikipedia): Formal, encyclopedic narration style
  • BOOK (Book Narration): Literary, storytelling style
  • Additional styles may be present in the dataset

Data Examples

Example 1: Conversational Style

{
  'filename': 'URD_F_CONV_00045',
  'text': 'سچ تو یہ ہے، کہ ہم ہی بیوقوف تھے۔',
  'language': 'Urdu',
  'gender': 'Female',
  'style': 'CONV',
  'duration': '2.739',
  'wav_path': '/data/TTS/ttsteam/datasets/rasa_hf/data_20251203/Urdu/Female/wavs/URD_F_CONV_00045.wav',
  'audio': {...}
}

Example 2: Wikipedia Style

{
  'filename': 'URD_F_WIKI_01270',
  'text': 'احمد شاہ ابدالی نے کُل سات حملے کیے جن میں سے چوتھے اور پانچویں حملے میں دہلی پہنچا۔',
  'language': 'Urdu',
  'gender': 'Female',
  'style': 'WIKI',
  'duration': '6.525',
  'wav_path': '/data/TTS/ttsteam/datasets/rasa_hf/data_20251203/Urdu/Female/wavs/URD_F_WIKI_01270.wav',
  'audio': {...}
}

Data Splits

Split Samples Description
train 46,500 Training data for model development
test 5,170 Held-out test set for evaluation

Usage

Loading the Dataset

from datasets import load_dataset

# Load full dataset
dataset = load_dataset("humairawan/UrduSpeech")

# Load specific split
train_data = dataset['train']
test_data = dataset['test']

# Access a sample
sample = train_data[0]
print(f"Text: {sample['text']}")
print(f"Gender: {sample['gender']}")
print(f"Style: {sample['style']}")
print(f"Duration: {sample['duration']} seconds")

Filter by Language

from datasets import load_dataset

# Load dataset
dataset = load_dataset("humairawan/UrduSpeech", split="train")

# Filter for Urdu samples only
urdu_data = dataset.filter(lambda x: x['language'] == 'Urdu')

# Filter for Kashmiri samples only
kashmiri_data = dataset.filter(lambda x: x['language'] == 'Kashmiri')

print(f"Urdu samples: {len(urdu_data)}")
print(f"Kashmiri samples: {len(kashmiri_data)}")

Filter by Gender and Style

from datasets import load_dataset

dataset = load_dataset("humairawan/UrduSpeech", split="train")

# Get female conversational speech
female_conv = dataset.filter(
    lambda x: x['gender'] == 'Female' and x['style'] == 'CONV'
)

# Get male Wikipedia narration
male_wiki = dataset.filter(
    lambda x: x['gender'] == 'Male' and x['style'] == 'WIKI'
)

print(f"Female conversational samples: {len(female_conv)}")
print(f"Male Wikipedia samples: {len(male_wiki)}")

Filter by Duration

from datasets import load_dataset

dataset = load_dataset("humairawan/UrduSpeech", split="train")

# Get samples between 2-10 seconds
filtered = dataset.filter(
    lambda x: 2.0 <= float(x['duration']) <= 10.0
)

print(f"Filtered samples: {len(filtered)}")

Example: Fine-tuning TTS Models

from datasets import load_dataset
import torch
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech

# Load model and processor
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")

# Load dataset
dataset = load_dataset("humairawan/UrduSpeech", split="train")

# Filter high-quality samples (2-10 seconds)
dataset = dataset.filter(lambda x: 2.0 <= float(x['duration']) <= 10.0)

# Preprocess function
def prepare_dataset(batch):
    audio = batch["audio"]
    batch["input_ids"] = processor(text=batch["text"], return_tensors="pt").input_ids
    batch["labels"] = processor(
        audio=audio["array"],
        sampling_rate=audio["sampling_rate"],
        return_tensors="pt"
    ).input_values
    return batch

# Process dataset
dataset = dataset.map(prepare_dataset)

Example: Style-Conditioned TTS Training

from datasets import load_dataset

# Load dataset
dataset = load_dataset("humairawan/UrduSpeech", split="train")

# Create style-specific subsets
styles = ['CONV', 'WIKI', 'BOOK', 'FEAR']
style_datasets = {
    style: dataset.filter(lambda x: x['style'] == style)
    for style in styles
}

# Train separate models or use style embeddings
for style, style_data in style_datasets.items():
    print(f"{style}: {len(style_data)} samples")

Example: ASR Training with Whisper

from datasets import load_dataset
from transformers import WhisperProcessor, WhisperForConditionalGeneration

# Load processor and model
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")

# Load dataset
dataset = load_dataset("humairawan/UrduSpeech", split="train")

# Preprocessing function
def prepare_asr_dataset(batch):
    audio = batch["audio"]
    # Process audio
    batch["input_features"] = processor(
        audio["array"],
        sampling_rate=audio["sampling_rate"],
        return_tensors="pt"
    ).input_features[0]
    # Process text
    batch["labels"] = processor.tokenizer(batch["text"]).input_ids
    return batch

# Apply preprocessing
dataset = dataset.map(prepare_asr_dataset, remove_columns=["audio"])

Dataset Statistics

  • Total Duration: Extensive audio coverage across both languages
  • Average Duration: ~5-7 seconds per sample
  • Gender Distribution: Balanced male and female representation
  • Style Diversity: Multiple speaking styles for expressive synthesis
  • Language Coverage: Comprehensive Urdu and Kashmiri lexicon
  • Audio Quality: High-fidelity studio recordings

Naming Convention

Audio filenames follow the pattern: {LANGUAGE}_{GENDER}_{STYLE}_{ID}

Example: URD_F_CONV_00045

  • URD = Urdu language
  • F = Female speaker
  • CONV = Conversational style
  • 00045 = Sample ID

Licensing & Attribution

This dataset is released under the CC-BY-4.0 license.

Source: Derived from AI4Bharat's Rasa Dataset

Citation:

@dataset{urduspeech2025,
  title        = {UrduSpeech: Multi-Style Urdu and Kashmiri Speech Corpus},
  author       = {Humair Munir},
  author       = {humair025},
  year         = {2025},
  publisher    = {Hugging Face},
  url          = {https://huggingface.co/datasets/humairawan/UrduSpeech},
  note         = {Derived from AI4Bharat Rasa Dataset}
}

Please also cite the original Rasa dataset:

@misc{ai4bharat2024rasa,
  title        = {Rasa: Building Expressive Speech Synthesis Systems for Indian Languages in Low-Resource Settings},
  author       = {AI4Bharat},
  year         = {2024},
  publisher    = {Hugging Face},
  url          = {https://huggingface.co/datasets/ai4bharat/Rasa}
}

Ethical Considerations

  • This dataset is intended for research and development purposes
  • Users should ensure compliance with privacy regulations when deploying models
  • The dataset includes emotional expressions (fear) - use responsibly
  • Consider cultural context when deploying applications built with this data
  • Ensure appropriate content warnings for applications using emotional speech

Limitations

  • Speaker diversity is limited to the original Rasa dataset speakers
  • Not all speaking styles may be evenly distributed
  • Kashmiri language samples may be fewer than Urdu
  • Domain coverage is limited to the source material styles
  • Some emotional expressions may not represent all cultural contexts

Technical Specifications

  • Audio Format: WAV format
  • Recommended Sampling Rate: 16kHz or 22kHz for TTS applications
  • Text Encoding: UTF-8 (Urdu script)
  • File Format: Parquet
  • Total Size: 28.9 GB

Recommended Preprocessing

# Recommended filtering for TTS training
filtered = dataset.filter(
    lambda x: 2.0 <= float(x['duration']) <= 10.0
)

# For ASR, you might want shorter samples
asr_filtered = dataset.filter(
    lambda x: 1.0 <= float(x['duration']) <= 15.0
)

# For style-specific models
style_filtered = dataset.filter(
    lambda x: x['style'] in ['CONV', 'WIKI', 'BOOK']
)

Related Datasets

UrduMegaSpeech-1M

For large-scale Urdu speech recognition and translation tasks, see our companion dataset:

🔗 UrduMegaSpeech-1M - A large-scale Urdu-English parallel speech corpus with 1M+ samples

When to use which dataset:

Feature UrduSpeech (This Dataset) UrduMegaSpeech-1M
Size 51.6K samples 1M+ samples
Primary Use TTS, Expressive Speech ASR, Translation
Languages Urdu, Kashmiri Urdu-English parallel
Speaking Styles Multiple (CONV, WIKI, BOOK, FEAR) General domain
Quality High-quality studio recordings Variable quality with scores
Best For Voice synthesis, style transfer Large-scale ASR, translation

Recommendation:

  • Use UrduSpeech for text-to-speech, expressive synthesis, and style-conditioned models
  • Use UrduMegaSpeech-1M for robust ASR training, speech translation, and when you need large-scale data

Acknowledgments

This dataset is curated from AI4Bharat's Rasa project, which aims to build expressive speech synthesis systems for Indian languages. We acknowledge their contribution to low-resource language technology.


Dataset Curated By: Humair Munir
Original Source: AI4Bharat Rasa Dataset
Last Updated: December 2025
Version: 1.0

Downloads last month
42