Datasets:
UrduSpeech
Dataset Summary
UrduSpeech is a high-quality multi-style speech corpus for Urdu and Kashmiri languages, designed for text-to-speech (TTS), automatic speech recognition (ASR), and expressive speech synthesis tasks. This dataset contains professionally recorded audio with diverse speaking styles, emotional expressions, and gender representation.
Dataset Composition
- Languages: Urdu, Kashmiri
- Total Samples: ~51.6K audio-text pairs
- Train: 46.5K samples
- Test: 5.17K samples
- Dataset Size: 28.9 GB
- Audio Quality: High-quality studio recordings
- Gender Diversity: Male and Female speakers
- Speaking Styles: Conversational (CONV), Fear (FEAR), Wikipedia (WIKI), Book narration (BOOK), and more
Source
This dataset is derived from AI4Bharat's Rasa Dataset, specifically the Urdu and Kashmiri language subsets.
Use Cases
This dataset is ideal for:
- 🔊 Text-to-Speech (TTS) - Train high-quality Urdu/Kashmiri speech synthesis models
- 🎤 Automatic Speech Recognition (ASR) - Develop robust speech-to-text systems
- 🎭 Expressive Speech Synthesis - Generate speech with different styles and emotions
- 👥 Multi-Speaker Models - Build gender-aware voice systems
- 📚 Domain-Specific TTS - Train models for conversational, narrative, or formal speech
- 🧠 Emotion Recognition - Develop systems to detect emotional expression in speech
- 🎯 Style Transfer - Learn to generate speech in different speaking styles
Data Fields
| Field | Type | Description |
|---|---|---|
filename |
string | Unique identifier for the audio sample (e.g., URD_F_CONV_00045) |
text |
string | Urdu/Kashmiri transcription text |
language |
string | Language label (Urdu/Kashmiri) |
gender |
string | Speaker gender (Male/Female) |
style |
string | Speaking style (CONV, FEAR, WIKI, BOOK, etc.) |
duration |
string | Audio duration in seconds |
wav_path |
string | Original file path reference |
audio |
audio | Audio data object |
Speaking Styles
The dataset includes multiple speaking styles to enable expressive TTS:
- CONV (Conversational): Natural, everyday speech patterns
- FEAR (Fearful): Emotional expression conveying fear or anxiety
- WIKI (Wikipedia): Formal, encyclopedic narration style
- BOOK (Book Narration): Literary, storytelling style
- Additional styles may be present in the dataset
Data Examples
Example 1: Conversational Style
{
'filename': 'URD_F_CONV_00045',
'text': 'سچ تو یہ ہے، کہ ہم ہی بیوقوف تھے۔',
'language': 'Urdu',
'gender': 'Female',
'style': 'CONV',
'duration': '2.739',
'wav_path': '/data/TTS/ttsteam/datasets/rasa_hf/data_20251203/Urdu/Female/wavs/URD_F_CONV_00045.wav',
'audio': {...}
}
Example 2: Wikipedia Style
{
'filename': 'URD_F_WIKI_01270',
'text': 'احمد شاہ ابدالی نے کُل سات حملے کیے جن میں سے چوتھے اور پانچویں حملے میں دہلی پہنچا۔',
'language': 'Urdu',
'gender': 'Female',
'style': 'WIKI',
'duration': '6.525',
'wav_path': '/data/TTS/ttsteam/datasets/rasa_hf/data_20251203/Urdu/Female/wavs/URD_F_WIKI_01270.wav',
'audio': {...}
}
Data Splits
| Split | Samples | Description |
|---|---|---|
| train | 46,500 | Training data for model development |
| test | 5,170 | Held-out test set for evaluation |
Usage
Loading the Dataset
from datasets import load_dataset
# Load full dataset
dataset = load_dataset("humairawan/UrduSpeech")
# Load specific split
train_data = dataset['train']
test_data = dataset['test']
# Access a sample
sample = train_data[0]
print(f"Text: {sample['text']}")
print(f"Gender: {sample['gender']}")
print(f"Style: {sample['style']}")
print(f"Duration: {sample['duration']} seconds")
Filter by Language
from datasets import load_dataset
# Load dataset
dataset = load_dataset("humairawan/UrduSpeech", split="train")
# Filter for Urdu samples only
urdu_data = dataset.filter(lambda x: x['language'] == 'Urdu')
# Filter for Kashmiri samples only
kashmiri_data = dataset.filter(lambda x: x['language'] == 'Kashmiri')
print(f"Urdu samples: {len(urdu_data)}")
print(f"Kashmiri samples: {len(kashmiri_data)}")
Filter by Gender and Style
from datasets import load_dataset
dataset = load_dataset("humairawan/UrduSpeech", split="train")
# Get female conversational speech
female_conv = dataset.filter(
lambda x: x['gender'] == 'Female' and x['style'] == 'CONV'
)
# Get male Wikipedia narration
male_wiki = dataset.filter(
lambda x: x['gender'] == 'Male' and x['style'] == 'WIKI'
)
print(f"Female conversational samples: {len(female_conv)}")
print(f"Male Wikipedia samples: {len(male_wiki)}")
Filter by Duration
from datasets import load_dataset
dataset = load_dataset("humairawan/UrduSpeech", split="train")
# Get samples between 2-10 seconds
filtered = dataset.filter(
lambda x: 2.0 <= float(x['duration']) <= 10.0
)
print(f"Filtered samples: {len(filtered)}")
Example: Fine-tuning TTS Models
from datasets import load_dataset
import torch
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech
# Load model and processor
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
# Load dataset
dataset = load_dataset("humairawan/UrduSpeech", split="train")
# Filter high-quality samples (2-10 seconds)
dataset = dataset.filter(lambda x: 2.0 <= float(x['duration']) <= 10.0)
# Preprocess function
def prepare_dataset(batch):
audio = batch["audio"]
batch["input_ids"] = processor(text=batch["text"], return_tensors="pt").input_ids
batch["labels"] = processor(
audio=audio["array"],
sampling_rate=audio["sampling_rate"],
return_tensors="pt"
).input_values
return batch
# Process dataset
dataset = dataset.map(prepare_dataset)
Example: Style-Conditioned TTS Training
from datasets import load_dataset
# Load dataset
dataset = load_dataset("humairawan/UrduSpeech", split="train")
# Create style-specific subsets
styles = ['CONV', 'WIKI', 'BOOK', 'FEAR']
style_datasets = {
style: dataset.filter(lambda x: x['style'] == style)
for style in styles
}
# Train separate models or use style embeddings
for style, style_data in style_datasets.items():
print(f"{style}: {len(style_data)} samples")
Example: ASR Training with Whisper
from datasets import load_dataset
from transformers import WhisperProcessor, WhisperForConditionalGeneration
# Load processor and model
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
# Load dataset
dataset = load_dataset("humairawan/UrduSpeech", split="train")
# Preprocessing function
def prepare_asr_dataset(batch):
audio = batch["audio"]
# Process audio
batch["input_features"] = processor(
audio["array"],
sampling_rate=audio["sampling_rate"],
return_tensors="pt"
).input_features[0]
# Process text
batch["labels"] = processor.tokenizer(batch["text"]).input_ids
return batch
# Apply preprocessing
dataset = dataset.map(prepare_asr_dataset, remove_columns=["audio"])
Dataset Statistics
- Total Duration: Extensive audio coverage across both languages
- Average Duration: ~5-7 seconds per sample
- Gender Distribution: Balanced male and female representation
- Style Diversity: Multiple speaking styles for expressive synthesis
- Language Coverage: Comprehensive Urdu and Kashmiri lexicon
- Audio Quality: High-fidelity studio recordings
Naming Convention
Audio filenames follow the pattern: {LANGUAGE}_{GENDER}_{STYLE}_{ID}
Example: URD_F_CONV_00045
URD= Urdu languageF= Female speakerCONV= Conversational style00045= Sample ID
Licensing & Attribution
This dataset is released under the CC-BY-4.0 license.
Source: Derived from AI4Bharat's Rasa Dataset
Citation:
@dataset{urduspeech2025,
title = {UrduSpeech: Multi-Style Urdu and Kashmiri Speech Corpus},
author = {Humair Munir},
author = {humair025},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/humairawan/UrduSpeech},
note = {Derived from AI4Bharat Rasa Dataset}
}
Please also cite the original Rasa dataset:
@misc{ai4bharat2024rasa,
title = {Rasa: Building Expressive Speech Synthesis Systems for Indian Languages in Low-Resource Settings},
author = {AI4Bharat},
year = {2024},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/ai4bharat/Rasa}
}
Ethical Considerations
- This dataset is intended for research and development purposes
- Users should ensure compliance with privacy regulations when deploying models
- The dataset includes emotional expressions (fear) - use responsibly
- Consider cultural context when deploying applications built with this data
- Ensure appropriate content warnings for applications using emotional speech
Limitations
- Speaker diversity is limited to the original Rasa dataset speakers
- Not all speaking styles may be evenly distributed
- Kashmiri language samples may be fewer than Urdu
- Domain coverage is limited to the source material styles
- Some emotional expressions may not represent all cultural contexts
Technical Specifications
- Audio Format: WAV format
- Recommended Sampling Rate: 16kHz or 22kHz for TTS applications
- Text Encoding: UTF-8 (Urdu script)
- File Format: Parquet
- Total Size: 28.9 GB
Recommended Preprocessing
# Recommended filtering for TTS training
filtered = dataset.filter(
lambda x: 2.0 <= float(x['duration']) <= 10.0
)
# For ASR, you might want shorter samples
asr_filtered = dataset.filter(
lambda x: 1.0 <= float(x['duration']) <= 15.0
)
# For style-specific models
style_filtered = dataset.filter(
lambda x: x['style'] in ['CONV', 'WIKI', 'BOOK']
)
Related Datasets
UrduMegaSpeech-1M
For large-scale Urdu speech recognition and translation tasks, see our companion dataset:
🔗 UrduMegaSpeech-1M - A large-scale Urdu-English parallel speech corpus with 1M+ samples
When to use which dataset:
| Feature | UrduSpeech (This Dataset) | UrduMegaSpeech-1M |
|---|---|---|
| Size | 51.6K samples | 1M+ samples |
| Primary Use | TTS, Expressive Speech | ASR, Translation |
| Languages | Urdu, Kashmiri | Urdu-English parallel |
| Speaking Styles | Multiple (CONV, WIKI, BOOK, FEAR) | General domain |
| Quality | High-quality studio recordings | Variable quality with scores |
| Best For | Voice synthesis, style transfer | Large-scale ASR, translation |
Recommendation:
- Use UrduSpeech for text-to-speech, expressive synthesis, and style-conditioned models
- Use UrduMegaSpeech-1M for robust ASR training, speech translation, and when you need large-scale data
Acknowledgments
This dataset is curated from AI4Bharat's Rasa project, which aims to build expressive speech synthesis systems for Indian languages. We acknowledge their contribution to low-resource language technology.
Dataset Curated By: Humair Munir
Original Source: AI4Bharat Rasa Dataset
Last Updated: December 2025
Version: 1.0
- Downloads last month
- 42