entry
stringlengths 6
10
| entry_name
stringlengths 5
11
| protein_name
stringlengths 3
2.44k
| sequence
stringlengths 2
35.2k
| function
stringlengths 7
11k
|
|---|---|---|---|---|
A0A1S4AUX8
|
ODC1A_TOBAC
|
Ornithine decarboxylase 1A, chloroplastic (EC 4.1.1.17)
|
MAGQTIIVSGLNPAAILQSTIGGGASPTAAAAENGTRKVIPLSRDALQDFMLSIITQKLQDEKQPFYVLDLGEVVSLIDQWKSALPNIRPFYAVKCNPEPSFLSILSAMGSNFDCASRAEIEYVLSLGISPDRIVFANPCKPESDIIFAAKVGVNLTTYDSEDEVYKIRKHHPKSELLLRIKPMFDGNARCPMGPKYGALPEEVEPLLRAAQAARLTVSGVSFHIGSGDADSNAYLGAIAAAKEVFETAAKLGMSKMTVLDVGGGFTSGHQFTTAAVAVRSALKQHFDDQPELTIIAEPGRFFAETAFTLATTIIGKRVRGELREYWINDGLYGSMNCVLYDHATVNATPLAVLSNRTNVTCGGSKTFPTTVFGPTCDALDTVLRDYQLPELQVNDWLVFPNMGAYTKAAGSNFNGFNTSAIVTHLAYAYPS
|
Involved in the biosynthesis of pyridine alkaloid natural products, leading mainly to the production of anabasine, anatabine, nicotine and nornicotine, effective deterrents against herbivores with antiparasitic and pesticide properties (neurotoxins) nornicotine serves as the precursor in the synthesis of the carcinogen compound N'-nitrosonornicotine (NNN). Catalyzes the first and rate-limiting step of polyamine biosynthesis that converts ornithine into putrescine, which is the precursor for the polyamines, spermidine and spermine (By similarity). Polyamines are essential for cell proliferation and are implicated in cellular processes, ranging from DNA replication to apoptosis (By similarity).
|
A0A1S4BDC4
|
MPO1_TOBAC
|
N-methylputrescine oxidase 1, peroxisomal (NtMPO1) (EC 1.4.3.-) (Copper methylamine oxidase) (EC 1.4.3.21)
|
MATTKQKVTAPSPSPSSSTASCCPSTSILRREATAAIAVVGDGLQNWTNIPSVDEKQKKTASSALASLPTTEPLSTNTSTKGIQIMTRAQTCHPLDPLSAAEISVAVATVRAAGETPEVRDGMRFIEVVLVEPDKSVVALADAYFFPPFQSSLMPRTKGGSQIPTKLPPRRARLIVYNKKTNETSIWIVELNEVHAAARGGHHRGKVIASNVVPDVQPPIDAQEYAECEAVVKSYPPFRDAMRRRGIDDLDLVMVDPWCVGYHSEADAPSRRLAKPLVFCRTESDCPMENGYARPVEGIYVLVDVQNMQIIEFEDRKLVPLPPVDPLRNYTAGETRGGVDRSDVKPLHIIQPEGPSFRISGNYVEWQKWNFRIGFTPREGLVIHSVAYLDGSRGRRPIAHRLSFVEMVVPYGDPNDPHYRKNAFDAGEDGLGKNAHSLKRGCDCLGYIKYFDAHFTNFTGGVETTENCVCLHEEDHGMLWKHQDWRTGLAEVRRSRRLTVSFVCTVANYEYAFYWHFYQDGKIEAEVKLTGILSLGALQPGEYRKYGTTILPGLYAPVHQHFFVARMNMAVDCKPGEAHNQVVEVNVKVEEPGKENVHNNAFYAEETLLRSELQAMRDCDPFSARHWIVRNTRTVNRTGQLTGYKLVPGPNCLPLAGPEAKFLRRAAFLKHNLWVTQYAPGEDFPGGEFPNQNPRVGEGLASWVKQDRPLEESDIVLWYIFGITHVPRLEDWPVMPVEHIGFVLQPHGYFNCSPAVDVPPPFACDSESRDSDVTETSVAKSTATSLLAKL
|
Involved in the biosynthesis of pyridine alkaloid natural products, leading mainly to the production of anabasine, anatabine, nicotine and nornicotine, effective deterrents against herbivores with antiparasitic and pesticide properties (neurotoxins) nornicotine serves as the precursor in the synthesis of the carcinogen compound N'-nitrosonornicotine (NNN). Amine oxidase which mediates the deamination of N-methylputrescine to produce 4-methylaminobutanal. Oxidizes preferentially N-methylated amines.
|
A0A1S4F020
|
CBPB1_AEDAE
|
Carboxypeptidase B1 (AaCPB-I) (CPBAe1) (EC 3.4.17.2)
|
MIPRIVVVLLSVLAVVTARRSYEGYKVYGIVPESPDEAEILYQIRQSNPDLDFWHLTKQPGDEARVLVAPKDQRSFLIKLIRHGLHYQEVISDVEGTLAPYNEPRTRGMSLDRDVSTSYLRHNEINEYLQTLSQKYPSLVSVEEAGTSYEGRSIKTITINKKPGNAVVFLDAGIHAREWIAPATALYAIEQLVEHSSENQEVLSNLTWVIMPVVNPDGYEFSHETDRFWRKTRKPTGKTCKGTDGNRNFDYHWGEVGASTQACADTFRGETAFSEPETRAVRDAVMKLKGSCKFYLSLHSYGNYILYPWGWTSKLPETWEAIDEVAQAGAEAIKQSTGSRYTVGSSTNVLYAAAGGSDDWAFAVAEVPISITMELPGGGNGGFNPPPSSIEKIVNESWVGIKAMALKVAQMF
|
Carboxypeptidase that preferentially hydrolyzes arginine and lysine residues at the C-terminus. During infection by dengue virus, may play a role in preventing viral packaging, maturation, and release from the midgut.
|
A0A1S4GMJ4
|
CLC9_ANOGA
|
CLIP domain-containing serine protease C9 (EC 3.4.21.-) [Cleaved into: CLIP domain-containing serine protease C9 subunit p12; CLIP domain-containing serine protease C9 subunit p30]
|
MCILTLVERKHLKNMVHVRLLVMMHILIIYSTFGAVRRPINIRVLEGNSCDTPQVIGGKCMNISLCDPAFVHSIAYQEHTPVCQQNAFYRVICCQPFLDFCENSKQFQIMHGIEAEPGMFPHLARLGLKSEEDGIAWTCSANIISERFLLTAAHCNPVNIAGLGCAESMQCDQQNTVKSFISNPKYKTSFKYHDIALVELEQNIRFNKRVLPICPYISKTDLHESEDLVIAGWGATESHFQSPRLMFATVRTVLQNDCKDHYASLLKASPNKKLHQGITDEMYCAQGALVDNVTEYIDACSGDSGGPLQTKQNNNLYLIGVISTGFGCGSSSPGLYTRVASYFGWIKETVSATRDN
|
Probable serine protease which plays an essential role in the innate immune response against bacteria and protozoa infection by activating the melanization cascade. In the susceptible strain G3, appears to be dispensable for ookinete elimination which occurs by lysis.
|
A0A1S4H5M5
|
CLA28_ANOGA
|
Inactive CLIP domain-containing serine protease A28 [Cleaved into: Inactive CLIP domain-containing serine protease A28 light chain; Inactive CLIP domain-containing serine protease A28 heavy chain]
|
MKVLLFCIVISLTTLIASGQDIEEELRCPGGYCVSKYLCPNGTFIDDIKHAQTTQLIGLRAGLDIDDFDDCNDYLLVCCQSAPAPTATSTEKPATSDELIEPPPSTNLACGQANEGGLIYDLRNNETLSQYAEYPWVVYILALKKQEANSGDFVCGGTLIHSRLVVTTAHNTDGKTDLVARFGEWDISTTKEPFPQQDIDVAEVIKHPQYVFNPIQNDIALLVLAENVQYAAHIRPICLPQPTDEFVGQRCVSNGWGKERGVYANVMKKLTLPVIGRANCTRMLRYAGLGPFYTLREGFLCAGGEVAVDMCKGDGGSPLACQTESGTYVLAGIVSWGIGCGGFNTPGVYVAVNRYVQWLNEHIVDQALNESFDIKL
|
Inactive serine protease which plays an essential role in the innate immune response against bacteria, fungi and protozoa infection by activating the melanization cascade. In the melanization cascade, acts downstream of TEP1, SPCLIP1 and CLIPA8 to promote CLIPC9 proteolytic cleavage. In the susceptible strain G3, appears to be dispensable for parasite P.berghei ookinete elimination which occurs by lysis. Required for the melanization of Gram-positive and Gram-negative bacteria. Required for the melanization of fungus B.bassiana.
|
A0A1S4H5S2
|
CLA8_ANOGA
|
Inactive CLIP domain-containing serine protease A8 [Cleaved into: Inactive CLIP domain-containing serine protease A8 light chain; Inactive CLIP domain-containing serine protease A8 heavy chain]
|
MPSWWCCCCLVVLLYAQRMIVPSSAQNDGSDELQECPGGFCSPKYLCPNGTYNEANAQNQEIIMLRFGEEDVCQDYMQVCCSNATSMRYELVTNNEPVEYGCGISNPGGLIYQVEGNRTYAQYGEFPWVVAILEAFYSSNEQQFTYVGGGTLIHPRFVVTAAHIFNKTENLVASFGEWDMNRDENVYPKQNIDIDRTIIVHPEYNSVGLLNDIALAQLKQNVVYDKHIRPICLPNPTDRFDDQLCISTGWGIEALTSAYANVLKRVDLPVIARASCKKLFAETRLGPFFRLHKSVLCAGGEEGADMCDGDGGSGLACPNESGAYVLAGIVSWGLSCHQQNVPGAYVNVARFVTWINATIEGIL
|
Inactive serine protease which plays an essential role in the innate immune response against bacteria, fungi and protozoa infection by activating the melanization cascade. In the melanization cascade, acts downstream of TEP1 and SPCLIP1 to promote CLIPA28 and CLIPC9 proteolytic cleavage and CLIPC9 recruitment to microbial surfaces. In the resistant strain L3-5, required for the melanization of killed parasite P.berghei ookinetes which results in their clearance. In the susceptible strain G3, appears to be dispensable for ookinete elimination which occurs by lysis. Required for the melanization of Gram-positive and Gram-negative bacteria. During the late stage of fungus B.bassiana-mediated infection, required for the initiation of hyphae melanization by promoting prophenoloxidase PPO activation.
|
A0A1S4HE51
|
CLA30_ANOGA
|
Inactive CLIP domain-containing serine protease A30 (Inactive CLIP domain-containing serine protease SPCLIP1)
|
MAFSLRIGIRTTDSKRCLVLLVLVVLLTVLACLPPSVEGNFPVGKFRRCNNNKGICVSREQCLNGQINTVGHTQIEPRLLNDDDIDECDVYGMQCCNLPSTNVPADSDEEEQEEEEKEKKGGTVTTTTTEEPDDPDWSRQCGQRTDVTERADQDGETNRFEFPWSVALFSKAQFFGKVRKEFLCGGTLIDDYLVLTAARCVNQKDRNTLVVQLGRWNLDAGKESRMQEIAVEELIIHRGYVLSSHLHNVALLVLANGAQLGRAANRVCLPDHSVQFGPDTLCYVVGWSNSPSPNTSNRQLKLRSMVAPVQECTATIRRSTGAWDFRLLSENICTTYLDDTVPCERAPGSGFVCESPTLPGQYFLVGIASYAVRQCHKYRAHDVFVHVPDYIEWVDGHVVNQSRQTSFYRPDPISFD
|
Probable inactive serine protease which plays an essential role in the innate immune response against bacteria and protozoa infection by activating the melanization cascade. Binds to the surface of parasite P.berghei ookinetes and bacterium E.coli where it promotes the accumulation of mature TEP1 which leads to the melanization of the microbe.
|
A0A1S4NYE3
|
CDIA_ECOST
|
tRNA nuclease CdiA (tRNase CdiA) (EC 3.1.-.-) (Contact-dependent inhibitor A) (CdiA-STECO31) (Toxin CdiA)
|
MHQPPVRFPYRLLSYLISTIIAGQPLLPAVGAVITPQNGAGMDKAANGVPVVNIATPNGAGISHNRFTDYNVGKEGLILNNATGKLNPTQLGGLIQNNPNLKAGGEAKGIINEVTGGNRSLLQGYTEVAGKAANVMVANPYGITCDGCGFINTPRATLTTGRPVMNADGSLQALEVTEGSITINGAGLDGTRSDAVSIIARATEVNAALHAKDLTVTAGANRVTADGRVSALKGEGDVPKVAVDTGALGGMYARRIHLTSTESGVGVNLGNLYAREGDIILSSSGKLVLKNSLAGGNTTVTGTDVSLSGDNKAGGNLSVTGTTGLTLNQSRLVTDKNLVLSSSGQIVQNGGELTAGQNAMLSAQHLNQTSGAVNAAENVTLTTTGGITLKGRSVAGKTLTVSSGSLNNGGTLGAGRDATVKTGTFSNTGAVQGNGLKVTATDLTSTGSIKSGSTLDISARNATLSGDAGAKDSARVTVSGTLENRGRLVSDDVLTLSATQINNSGTLSGAKELVASADTLTTTEKSVTNSDGNLMLNSASSTLAGETSAGGTVSVKGNSLKTTTTAQTQGNSVSVDVQNAQLDGTQAARDILTLNASEKLTHSGKSSAPSLSLSAPELTSSGVLVASALNTQSQTLTNSGLLQGEASLTVNTQRLDNQQNGTLYSAADLTLDIPDIRNSGLITGDNGLTLNTASLSNPGKITADTLNVRATTLDGDGLLQGAAALALAGDTLSQGSHGRWLTAGDLSLRGKTLNTAGTTQGQNLTVQADRWANSGSVLATGNLTASATGQLTSTGDIMSQGDTTLNAATTDNRGSLLSAGTLSLDGNSLDNSGTVQGNHVTLHHRSTDNSGTVTGLSGLTLHSADGLTNSGALLSQNSLVLSAGDVTNSGRIQGQNITLDASSLTSSGAVQSALDLALTLSGDVIAATGSKITALGDARLTGKVLGNQGLISAKTLEVNGDSLSNSGEISGVNSLNVTLSGNLQQHGKMLTGGALNVNARDISNSGQLQGADNRITASSLANSGRVQGESGLTLTLLNALTNQTSGVLLSQNVSALSAPVLTNDGTIQGNGKTTLSAATQAHNSGKILSGGELTFTTPDYSGSGWLQATDLLLNVAKLAGNGTVMAANQATLTGNSLTNRGLFQAAQLNVNTQTITNSGTLLGNQGLTIKGNNLNNAGGKVFSGGDMLAEMVSLSGAGQLVALGNLTLKLTRGLTAQGVIAANKQLSVSSQGDITNGATLQGNGITLNAAGRLTNNGQLTAGNGTTALSGSGIAMNASGSLQAGGDVSLTSRGDITLDAFTGTTGSLMLTAAGAVINTALLYAGNNLSLFASTIRNHHGDMLAGDSLVMQKDVSGAANAEVINTSGNIETTRGDITIRTGHLLNQREGINETKSYIPVENVAVPDGANSVSVRVGDLGEDGWGYYVKSWSGTAGGGFDAWAVPTEKGATRKFLTGTTRVDVGATGGDARISAGNNLLIDADKLDNTGSHLLASGFVSLSGSQLNNQSFFGYTQDEYNVYRYYGKLAMIPNDGHLQYGDASADDRVTFTLSGAPEYVTRDTGQALRAVIQAGKNVTAVFSSDISNTSTTSNAGRITNTLAAPEINTPAEKNISPRMAQLAPDGTEMLTVTAPDWTDTITRLTIGSGTDLASGIVEGNYPLPSGNNGYFVPSADPDSPYLITVNPKLDGLGKVDSSLFAGLYDLLRMHPGQAPRETDPAYTDEKQFPGSSYFLDRLGLKPEKDYRFLGDAAFDTRYVSNYMLNQIGGRYINGVGSDTDQMRYLMDNAARAQKALGLKFGVALTADQVAALDQSILWYKAVTIKGQTVMVPEVYLSPKDVTLQNGSIISGQNVHLAGGNVTNSGSTLMAQNNLTIDSADSLGNLESGLINAGGALGLKAMGDINNISATITGKTVRLESLAGNVNNLTRYSHWQLDAPEDSLALKHTYTGSIASVSAMDSLDIRADKNISVTGAEISAGDRAALIAGNDLSLNAIDRVSSRRHANSESHQRSAGLTTITAGDSVMLSAGRDVSSQGAGIAAEDNITVRAGRDVNLLAEESVTGSSSYSKKKTVIDETVRQQGAEIASGGDTTITAGRDITAVASSVTATGNISVNAGRDVALTTATESDYHYLETKKKSGGFLSKKTTHTISENSATREAGALLSGNRVTVNAGDNLTVQGSDVVADRDVSLAAGNHVDVLAATSTDTSWRFKETKKSGLMGTGGIGFTIGSSKTTHDRREAGTTQSQSASTIGSTAGNVSITAGKQAHISGSDVIANRDISITGDSVVVDPGHDRRTVDEKFEQKKSGLTVALSGTVGSAINNAVTSAQETKESSDSRLKALQATKTALSGVQAGQAAAMATATGDPNATGVSLSLTTQKSKSQQHSESDTVSGSTLNAGNNLSVVATGKNRGDNRGDIVIAGSQLKAGGNTSLDAANDILLSGAANTQKTTGRNSSSGGGVGVSIGAGKGAGISVFASVNAAKGSEKGNGTEWTETTTDSGKTVTINSGRDTVLNGAQVNGNRIIADVGHDLLISSQQDTSKYDSKQTSVAAGGSFTFGSMTGSGYIAASRDKMKSRFDSVAEQTGMFAGDGGFDITVGRHTQLDGAVIASTATPDKNHLDTGTLGFSDLHNEADYKVSHSGISLSGGGSFGDKFQGNMPGGMISAGGHSGHAEGTTQAAVAEGTITIRDRDNQKQNPADLSRDPAHANDSISPIFDKEKEQRRLQTVGLISDIGSQVADIARTQGELNALKAAKEATGETLPANATEKQRQEYLAKLRDTPEYKKEQEKYGTGSEIQLGIQAATAALQGLAGGNLAGALAGASAPELAHLLKSTEKDPAVNAIAHAILGGAVAAMQGNNVAAGAAGAATGELAARAIAGMLYPGVKQSDLSEEQKQTISTLATVSAGLAGGLTGNSSASAAVGAQSGKNAVDNNYLSVSEKTELEIAKQTLKNSKNPAEREKAQQKYDALLEKDIASDKEVIAACGNGNAGSSACASARLKVIASKEGYEDGPYNSKYSQQYADAYGQIVNLLDITSVDVQNQQQVKDAMVSYFMATLGVDQKTAQGYVETTQGLEIAAASMTPLFGQAVANKITALVDKANKYPSGIGFKINQPEHLAQLDGYSQKKGISGAHNADVFNKAVVDNGVKIISETPTGVRGITQVQYEIPTKDAAGNTTGNYKGNGAKPFEKTIYDPKIFTDEKMLQLGQEAAAIGYSNAIKNGLQAYDAKAGGVTFRVYIDQKTGIVSNFHPK
|
Toxic component of a toxin-immunity protein module, which functions as a cellular contact-dependent growth inhibition (CDI) system. CDI modules allow bacteria to communicate with and inhibit the growth of closely related neighboring target bacteria in a contact-dependent fashion (target cell counts decrease 1000- to 10000-fold with this CDI). Uses outer membrane nucleoside transporter Tsx on target cells as a receptor. Gains access to the cytoplasm of target cells by using integral inner membrane protein PTS system glucose-specific EIICB component (ptsG) (Probable). Targeting of the C-terminal domain (CT) domain (residues 2931-3253) in the absence of immunity protein inhibits cell growth and causes tRNA(UUC-Glu) cleavage expression of cognate immunity protein CdiI-STECO31 neutralizes growth inhibition leaving tRNA(UUC-Glu) is intact, whereas non-cognate immunity proteins do not confer protection. The CT domain cleaves tRNA it is most active against tRNA(UUC-Glu), but also has modest activity against tRNA(GUC-Asp), tRNA(UUG-Gln), tRNA(CCC-Gly), tRNA(UCC-Gly), tRNA(GCC-Gly), tRNA(UUU-Lys), tRNA(GGU-Thr) and tRNA(CCA-Trp) tRNA cleavage is inhibited by cognate immunity protein CdiI. Cleavage of tRNA(UUC-Glu) occurs in the anticodon loop between cytosine(37) and 2-methyladenosine(38) (C37-m2A38) and probably also occurs in the anticodon loop of other tRNAs as well. The CdiA protein is thought to be exported from the cell through the central lumen of CdiB, the other half of its two-partner system (TPS). The TPS domain probably remains associated with CdiB while the FHA-1 domain forms an extended filament (33 nm long) with the receptor-binding domain (RBD) at its extremity in the secretion arrested state the C-terminus of the RBD and YP domains form a hairpin-like structure as the FHA-2, PT and CT domains are periplasmic. The YP domain is probably responsible for this arrest at the point where it re-enters the host cell periplasm. Upon binding to a target cell outer membrane receptor (Tsx for this CDI) a signal is transmitted to activate secretion. The filament becomes about 5 nm longer, the rest of CdiA is secreted and the FHA-2 domain becomes stably associated with the target cell's outer membrane where it facilitates entry of the toxic CT domain into the target cell periplasm. From there the toxic CT domain is cleaved and gains access to the target cell cytoplasm via an inner membrane protein (PTS system glucose-specific EIICB component, ptsG for this CDI).
|
A0A1S5RW73
|
KPS_SALDI
|
(-)-kolavenyl diphosphate synthase, chloroplastic (SdKPS) (EC 5.5.1.28) (Clerodienyl diphosphate synthase) (Kolavenyl diphosphate synthase CPS2) (SdCPS2)
|
MSFATSLPRPTTTGAAGFGLPLATCISLSVSHSFSPKFGICNNTSLRLKSKAGSGCYEGIHRSQLAASTILEGHTPINPEVESEKIRLIERIRLMFRSMDDGEISVSPYDTAWVALVEDIGGSGGPQFPTSLEWISNNQLDDGSWGDRKFVLYDRILNTLACVVALTTWKMHPNKCEKGLRFISDNIEKLADEDEELMPVGFEIALPSLIDLAKRLCIEIPDNSASIKNIYAKRDSKLKRIPMDLMHKKPTSLLFSLEGMEGLNWDKLLDFQSEGSFLSSPSSTAYALHHTKDELCLEYLLKAVKKFNGGVPNAYPVDMFEHLWSVDRLRRLGISRYFQVEIDECLDYVYRYWTNKGICWARNMCVQDSDDSSMGFRLLRLYGYDVSIDVFKQFEEGGQFCSIPGQMTHAITGMYNLYRASQLMFPQEHILADARNFTANLLHQKRVTNSIVDKWIITKDLPGEVAYALDVPFYASLPRLEARFFLEQYGGDDDVWIGKTLYRMLYVNCNTYLELAKLDYKHCQTVHQLEWNSMQTWYRECNLGEFGLSERSLLLAYYIAASTAFEPEKSSERLAWAITTILVETIMSQELSDEQKREFVDEFVNISIINNQNGGRYKPGNRLVEVLINTVTLMAEGRGTDQQLSNAWKNWLKTWEEGGDLGEAEARLLLHTIHLSSGLDESSFSHPKYQQLLEATSKVCHQLRLFQNLKANDAQGSTSRLVTVTTFQIEAGMQELVKLIFTKTLEDLTSATKQSFFNIARSFYYTAYCPADTIDSHINKVLFEKIV
|
Involved in the biosynthesis of clerodane diterpenoids natural products, including salvinorin A with potent agonistic activity on brain kappa-opioid receptors, thus confering hallucinogenic properties. Diterpene synthase that catalyzes the formation of (-)-kolavenyl diphosphate from geranylgeranyl diphosphate (GGPP) as the first reaction in salvinorin A biosynthesis.
|
A0A1S6M251
|
B4GT5_PIG
|
Beta-1,4-galactosyltransferase 5 (Beta-1,4-GalTase 5) (Beta4Gal-T5) (b4Gal-T5) (EC 2.4.1.-) (Beta-1,4-GalT II) (Glucosylceramide beta-1,4-galactosyltransferase) (EC 2.4.1.274) (Lactosylceramide synthase) (LacCer synthase) (UDP-Gal:beta-GlcNAc beta-1,4-galactosyltransferase 5) (UDP-galactose:beta-N-acetylglucosamine beta-1,4-galactosyltransferase 5)
|
MRVRRGLLRLPRRSLLAALFFFSLSSSLLYFVYVAPGIVNTYLFMMQAQGILIRDNMRTIGAQVYEQVVRSAYAKRNSSVNDSDYPLDLNHSETFLQTTTFLPEDFTYFANHTCPERLPSMKGPIDINMSEIGMDTIHELFSKDPAIKLGGHWKPSDCVPRWKVAILIPFRNRHEHLPVLLRHLIPMLQRQRLQFAFYVVEQVGTQPFNRAMLFNVGFQEAMKDLDWDCLVFHDVDHIPENDRNYYGCGQMPRHFATKLDKYMYLLPYNEFFGGVSGLTVEQFRKINGFPNAFWGWGGEDDDLWNRVQNAGYSVSRPEGDTGKYKSIPYHHRGEVQFLGRYALLRKSKERQGLDGLNNLNYFANITYDALYKNITVNLTPELAQVTEY
|
Catalyzes the synthesis of lactosylceramide (LacCer) via the transfer of galactose from UDP-galactose to glucosylceramide (GlcCer) (By similarity). LacCer is the starting point in the biosynthesis of all gangliosides (membrane-bound glycosphingolipids) which play pivotal roles in the CNS including neuronal maturation and axonal and myelin formation (By similarity). Plays a role in the glycosylation of BMPR1A and regulation of its protein stability (By similarity). Essential for extraembryonic development during early embryogenesis (By similarity).
|
A0A1S7LCW6
|
MAMP_MAGMO
|
Multi-heme protein MamP (EC 1.-.-.-) (Magnetochrome MamP) (Magnetosome-associated protein MamP)
|
MKLKGTTIVALGMLVVAIMVLASMIDLPGSDMSATPAPPDTPRGAPIVGGQGQAMGLPVAMQRRRGEQRAPVPALSDANGGFVAPNVQFSEAHWQGMEALPLSIELKRKLKLPLDLEGLLIDETSLNAAVSGLLAGDVLVAINGRKVKTLKKMQKETRRVQMDRRASLTVYRKGRLLTLTLSEEKNLGLAQVETAPMILPGDIMPHPYRGPCTQCHAIGTTGHITPDPDGIVLPPGPIRAGAKMPHRDRGPCAACHAIIQ
|
Oxidizes Fe(2+) at alkaline pH successively forms ferrihydrite (Fe(3+)(2)O(3) 0.5 H(2)O) then magnetite (Fe(3)O(4)) from an Fe(2+) solution.
|
A0A1U8F5V2
|
IFI4E_CAPAN
|
Eukaryotic translation initiation factor isoform 4E (eIF(iso)-4E) (eIF(iso)4E) (eIF-(iso)4F 25 kDa subunit) (eIF-(iso)4F p28 subunit) (mRNA cap-binding protein)
|
MATEAPPPVDTTEVPPFTAAETAVKQPHKLERKWTFWFDNQSKPKQGAAWGSSLKKAYTFDTVEEFWSLYDQIFKPSKLTVNADFHLFKAGIEPKWEDPECANGGKWTVTSSRKANLETMWLETLMALVGEQFDDSEDICGVVASVRRSQDKLSLWTKTATNEAAQMGIGRKWKEIIDTEKISYSFHDDSKRERSAKSRYTV
|
Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (By similarity). Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structures (By similarity). Key component of recessive resistance to potyviruses.
|
A0A1U8GR65
|
IF4E1_CAPAN
|
Eukaryotic translation initiation factor 4E-1 (eIF4E-1) (eIF-4F 25 kDa subunit) (eIF-4F p26 subunit) (mRNA cap-binding protein)
|
MATAEMEKTTTFDEAEKVKLNANEADDEVEEGEIVEETDDTTSYLSKEIATKHPLEHSWTFWFDNPVAKSKQAAWGSSLRNVYTFSTVEDFWGAYNNIHHPSKLVVGADLHCFKHKIEPKWEDPVCANGGTWKMSFSKGKSDTSWLYTLLAMIGHQFDHEDEICGAVVSVRGKGEKISLWTKNAANETAQVSIGKQWKQFLDYSDSVGFIFHDDAKRLDRNAKNRYTV
|
Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome. Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structures. Key component of recessive resistance to potyviruses.
|
A0A1U8QK63
|
PKIC_EMENI
|
Fatty acid synthase beta subunit pkiC (EC 2.3.1.86) [Includes: 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase [NADH] (EC 1.3.1.9); [Acyl-carrier-protein] acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] malonyltransferase (EC 2.3.1.39); S-acyl fatty acid synthase thioesterase (EC 3.1.2.14) (Pki biosynthesis cluster protein C)]
|
MALEEVPSVSRDLDHSALRALSSASPSSLPSSCSRSTTSLLFQSKGIEFRLSIPDTFLSLVEPHRNAFLASYSTQGNTQSPLELALSFLYFLLDQKVSPLVLSSVLRAFNLEFLGNRSEIHSLIADLTPIPKQRQRWLGIYYRFLEASDDKRAEIPLSSIFQHARTNEFQLMAVFGGQGECSRTCLNEFAELYSSYEPMLRRLVGVIGPCLYNLSTSDEYSSYYRNQPLDLKAWITDENHVPDLGFVASAPVSVPVIGALSLARYCVTCHITGCNPGLMRSMLRTATGHSQGLLAAIVVAVSHSWDSFYQATEEVIELLFRLGWECHHAAPCSMVPAANYADVDGANGPSYMLSLRGLKRQETEATIDHVNASLPEDKRLYLALINAYDQFVVAGPVASLLRLESHLVEITSKDIDQSRIPFRDRKPYIQHSFLPVSTPFHTPYLTRAAARVKKQFAARPIPTRRLAIPVYHTHTGLDLRKQGGCALSIAIDAIASEPCNWPCAVASYHASHILTFDRGGLAPLIKRVREGCGVRVVQVADLDTRDSEMATMRDLFATKLLPTSTKLQSWGQQFRPGLASGPKIQLETRLNRVLGAPPIMVAGMTPTTVHPDFVAAIMNAGYHAELAGGGYHNASAMEAAIYDLVSSIPKERGITCNLIYANPRSISWQIELLRRLSNGNVRIDGLTIGAGVPSLTVASEYIETLGLRHISFKPGSVAAIRKVVEIAREHPDFPVILQWTGGRGGGHHSFEDFHAPIIATYGIIRQEPNVYLVAGSGFGDSDSVYPYLTGSWSVAMGHPAMPFDGILLGSRMMVAKEAHTSPAVRRIIAATPGVSDSEWEKTYSGPAGGVITVTSEMGEPIHKIATRGVCLWADLDKTVFSLSRRDRLTYLAQHRRSIIQRLNADFAKPWFGCNSDGEAVDLEDMTYLEVLKRLTALMFVPNKQWIDASYIEFTMTIAQRWLQRLQFDSEAAASLTISLLRKAPDRFLAIFADVCPTAEGDLLNPEDISFFLMQCKTPGRKPVNFIPALDDDFEFYFKKDSLWQAEDVDAVLDQDAERVCILHGPIAARYSKSDSEPAGYILDSILNGVVARLRETSTAEMLLPKLERGHTTPASWSTLSLTERDTSEETSDTSITSLSELIENHSFSSGGVDSVPRPSHPLWMRALLEDDVVLQGTLRQKNPFRDLIQSSPNTVVNYNQDSSELMVTAQEPYHISSFMRAVCHDGVMDKRNERIKSFYSLLWFGHDCDTSQSLNGVFYGPDITLTEDLLDEYNATIGPAYSDHRQMVPSTDVLPISMGIIIAWDVISRPLILRQIGGDLLRLVHRSNTFEYYSDTRLRLGDSVSSRSEVQAVYDDDGGRVVIVEAQILRSRVPVMTVTSTFLFRGSKGTTVPAFRRAREQKWTYDVTSEFEESILLSRNWFRPCDPSLTLVGKSMIFDLNSLVKYHDDGNMELHVQGTAMSQTNGQQQKLAIVDFRNTCTGNPVLDFLQRRGKLAEPRTEFKIPGWAGKSTMDIQMPPSNEPYAQLSKDFNPIHTSPIFSSLAGVPGTLCHGMCTSAIAERVLEHLGLGGDRERLRRFEARFTDMVMPLEKLVVEIKHTGMVDGRMCFSILAKRKETDERVLEGDAEVEQPRTAYLFTGQGSQSKGMGMDLYKTSTGQFLLTNKGGLFWTSCKTTQSPLPIRQKYLDITTEVVLPNGKRVQKPVFPGLTPTSTSYTFRHPRGLLYSTQFAQPAILLFEAAAFAELRAKGYVSHGAVYAGHSLGEFGALSALSRSVPTGALVELAFYRGSVMQASVASDNDGGTTYGMVAMNPKRVGTFFTQTTLDRLVSQIAAQSQELLEIVNFNIEGEQYVCSGTIDRPISGGTWPSLSG
|
Fatty acid synthase beta subunit part of the pki gene cluster that mediates the biosynthesis of 2,4-dihydroxy-3-methyl-6-(2-oxoundecyl)benzaldehyde. The first step in the pathway is the generation of the decanoyl starter unit by the FAS composed of subunits pkiB and pkiC, which is then transferred directly from the FAS to the SAT domain of the non-reducing polyketide synthase pkiA. PkiA condenses the decanoyyl starter unit with 4 malonyl-CoA units and performs one methylation step to yield 2,4-dihydroxy-3-methyl-6-(2-oxoundecyl)benzaldehyde.
|
A0A1U8QLG8
|
PBCB_EMENI
|
Geranylgeranyl pyrophosphate synthase AN1592 (GGPP synthase) (GGPPSase) (EC 2.5.1.-) ((2E,6E)-farnesyl diphosphate synthase) (Dimethylallyltranstransferase) (EC 2.5.1.1) (Farnesyl diphosphate synthase) (Farnesyltranstransferase) (EC 2.5.1.29) (Geranylgeranyl diphosphate synthase) (Geranyltranstransferase) (EC 2.5.1.10) (Pimaradiene biosynthesis cluster protein AN1592)
|
MSPPLDSALEPLSEYKETAFPRTEKDPSQYKEHDLVTPEKEIQTGYFSPRGSHSSHGSHDSSASSNISLDDARMSDVNNSPNVFHDDPDTIDEKLSMYWKAANETVIREPYDYIAGIPGKEIRRKLLEAFNHWYKVDEQSCQAIATTVGMAHNASLLIDDIQDSSKLRRGVPCAHEVFGIAQTINSANYVYFLAQNQLFRLRSWPQAISVFNEEMVNLHRGQGMELFWRDNLLPPSMDDYLQMIANKTGGLFRMIVRLLQTSSRQVIDVEQLVDVLGLYFQILDDYKNIREEKMAAQKGFFEDLTEGKFSFPICHAIGEGAKNRTALLHMLRLKTDDMKIKQEAVCILDNAGSLDYTREVLYGLDRKARSLLREFKTPNPFMEALLDAMLSSLQACH
|
Geranylgeranyl pyrophosphate synthase part of the gene cluster that mediates the biosynthesis of the diterpene ent-pimara-8(14),15-diene (PD). Within the cluster, the HMG-CoA reductase AN1593 functions in the mevalonate pathway, which produces isoprenoid precursors. The geranylgeranyl pyrophosphate (GGPP) synthase AN1592 is needed in the formation of GGPP, the precursor for diterpenes. Lastly, the pimaradiene synthase pbcA performs the 2 cyclization steps that convert GGPP to ent-pimara-8(14),15-diene. The putative roles of the remaining cluster enzymes in ent-pimara-8(14),15-diene biosynthesis is unclear (Probable). The cytochrome P450 monooxygenase AN1598, the glutathione S-transferase AN1595, the oxidoreductases AN1596 and AN1597 probably function as decorative enzymes (Probable). It is possible that in biological conditions the compound is oxidized to ent-pimara-8(14),15-dien-19-oic acid, which is a bioactive diterpene compound predominant in many plant extracts (Probable).
|
A0A1U8QNG8
|
HXNS_EMENI
|
Nicotinate hydroxylase hnxS (EC 1.-.-.-) (Nicotinate catabolism cluster protein hxnS) (Purine hydroxylase II) (PHII) (Xanthine dehydrogenase II)
|
MDALLPRSSPQLKFYLNGTPISLTSPHPRWTLLDFIRSQDGLKGTKLGCGEGGCGALSGKHVITIEGLGTVDHPHPLQERIAQLHGSQCGFCTPGIVMSLYAMIRNAYDPVTGKFQLSADDIESKGHLDGNLCRCTGYKPILNAARTFIEDDLGSVPSIVESELVGTEEETESDMGAHSGSGDTGSRSSGSCGRPGGCCKDSPGISSCSSRETDMTTPSLPDSPVLKQYDFIPYTPTTELIYPPGLAKFVPELLCYGDAEQAWVKPRSVQEALEILSQCPSATLVTGASEVQVDVRFKDFRPSVSVFVGDITEMTGISWSEDMKTLYIGGSASLSDIEAECLRCIPLLKAVNLGSESVLSAIARTLRYFAGRQIRNAACLAGNIATASPISDMNPLLLAVGATVHARTSAEETTIPMSEMFKGYRKTALPSGSLITKIAVPMPSKDQIEIVNAYKQAKRKDDDIAIVTAAFRVRIAPGPDYTVQEASLAFGGMAPTTVLAHKTASALEGKRWGDEAVLDIVLTSLGEEFNLPYSVPGGMATYRRTLTLSLFVRFWNYVNQKLGLEYDSDLIEEIHRGISTGTRDDDNPHAQRVVGQQIPHLSGLKHATGEAEYVDDMPPLHRELHGALVLSERAHAKILSVNWTPALERGAVGYVDHTSLPEEKNHWGPVVHDEPVFAKGEVHAHGQPIGLVYADDAMTAQIAAKAVIVTYEDLPAILTIDEAIEARSFFNYGKELRRGAPPEEIRKELDDCEYTLSGTTKIGGQEHFYLETNAAIAVPHTEDGSMDVWSSTQNTMETQDFLSQVTNVPRHKINARVRRMGGAFGGKESRSVPIACIVAVAAKKARRPVRIMLNRDEDMMTSGQRHPVQCRWKVGFNREGKLLVLDADTYNNAGYSVDMSAAVMDRCLTHIENCYYIPNVWLRGWVCKTNTHSNTAFRGFGAPQAMYITESIISAVAEKVGIDVDEIRRRNLYQVGQRTPFNQVLDEDWHVPLLLEQVREEADYDARKKEIERFNSEHRWRKRGIALIPTKFGISFATALHLNQASAAVRVYTDGSVLLNHGGTEMGQGLYTKMVQVAAQELRVPVDQVYTQDTSSYQTANASPTAASSGSDLNGMAIKHACDQINERLRPYREKYGEDADLGTIAKAAYRDRVNLSAAGYYKMPTIGYEWGNYSENVKPMYFYFTQRQGVACTEVELDLLTGTHTVLRADLKMDIGRSINPAIDYGQIEGAFVQGQGLFTMEESLWTRSGQLATRGPGTYKIPGFADIPQVFNSSKGIGEPPLFMGSSVLFALRDALSHARRERGVSEPLVLDSPATVERLRLAVGDDLVHRAQVQRKDGEQGFFVAVA
|
Nicotinate hydroxylase, part of the hnx cluster involved in the purine degradation. The nicotinate hydroxylase hnxS accepts nicotinate as a substrate and catalyzes the first step of nicotinate catabolism. HnxS accepts also hypoxanthine, but not xanthine, as a substrate. The major facilitator-type transporters hxnP and hxnZ are probably involved in the uptake of nicotinate-derived metabolites, and the oxidoreductases hxnT and hxnY in the further metabolism of 6-OH nicotinic acid.
|
A0A1U8QWA2
|
ATR12_EMENI
|
Glycine betaine reductase ATRR (Nonribosomal peptide synthetase-like protein ATRR) [Includes: Carboxylic acid reductase (EC 1.2.1.-); Aldehyde reductase (EC 1.1.1.-)]
|
MAIIDTTKDLSALFTQQVRASPNALALEDDKTSYTYAELDKEVEELSRRLRSYGVSRDSLVGVLLPRSAHFVIACLAALRAGGAFLVLELAYPPDLLADVLEDATPAVVVTHRSETGKIKGSVPVISLDEPPVDANGHTVEPGPLPVDDDLDRLAFVSYSSGTTGKPKGIANPHRAPVLSYNLRFGVQDLQPGDRVACNVFFIWEILRPLIRGATVVAVPDDHSYDPAALVDLLASRHITETLMTPTLLATILSRHSDIGARLPELRTLWLNGEVVTTDLARRAIRALPNTRLLNCYSACETHEIACGDIKEIVSDESQYCPVGPLLDPKHAYIVNEQGEKVEEGVSGELCVGGPMLARGYINRPETTAKAFIPDPFSNSPGAVMYRTGDRARMLPSGLLEITGRVGAMIKLRGYSVVPGKVENDIVKHLAVRQCAVVAHGEGLERQLVAYIVADQEHSEERPTVEINSSGHSPGARRALTKFLAHYMIPALWVQVDELPTHEVSGKIDLKRLPPPPTEVLANGNGKKEDPIGIEDIAAIWAVALKVPKATLKPEDNFFDLGGHSLSIADLSSRLSRKFGFRIPIVRLAENSTLSGHLDTVRAIRDGHTAAVQADLPAVLRTDATLDEEIRSDAKICSLTDAKTVLLTGVTGFLGAFLLKDLVDSTSAHIICLVRFNEPEDDDQPGGVARIRRNLLDLGLWNDSIMERVEILPGNLSRSRFGLTPDAFQELAQRVDVIVHAAASVNLVYPYAALRAANVGGTREILRLASQGGATVQYVSTNGVLPPSGEKGWPEDTMLDMKDVPTKLLDGYGQTKWVAEQLVLEAGRRGLPVRVHRIGTVSGHSQSGAANAWDLLTALIVESIKLGKYPDVEGWRAEMTPVDFVSKAIIHLANQTAVEQTVFHIGDPDPVNTRSVFEDLKTLGYPTEPLSWDDWVALWTSQRGHVKGGDGGFTVDILRSGMPSIEFLRGIVVLDNSATRPIRREVERPKVDRFLLETYTRHWFARGWLKRPPIRQRQLSPIPKGPLSGKVAVVTGASSGIGAAVATALAREGAHVALGARRLDALESLKEKLSASGVKVVTCKTDVTDRKQVEGLVKAATEELGPVDILVACAGVMYFTMMANTQMDEWERTVDVNCKGILNSLASTVPGMLARGKGHVVAISSDAGRKVFPGLGVYSASKFFVEATLQALRLETAGQGLRVTAVQPGNTATDLLGMSTDAEAIKKYGEPSGAQILDPEDVANSIIYALRQPEHVAMNEILIEPRDEPI
|
NRPS-like enzyme with an unusual domain architecture that converts back glycine betaine to choline via a 2-step reduction mechanism, and thereby can be an alternative source of choline. Permits direct reutilization of endogenously stored glycine betaine for on-demand biosynthesis of choline and choline derivatives, including phospholipid phosphatidylcholine (PC) which has an essential role in maintaining membrane integrity and functionality, or choline-O-sulfate, a mean for intracellular sulfate storage. Glycine betaine is activated by the adenylation (A) domain, and transferred to the thiolation (T) domain. Movement of the phosphopantetheine arm to the thioester reductase domain R1 then allows thioester reduction by NADPH of glycine betainoyl thioester to glycine betaine aldehyde, which is in turn reduced to choline by the aldehyde reductase domain R2.
|
A0A1V0E492
|
TPS1_PIPNI
|
Terpene synthase 1 (PnTPS1) (Alpha-humulene synthase) (EC 4.2.3.104) (Beta-caryophyllene synthase) (PnCPS) (EC 4.2.3.57)
|
MACVSDLVAFTQPLIIGAKPLEIVRRSAAFHPNVWGDYFLKLSQDEKKLESMRERAKVLKEKVLKKLSTIEGGERLELIDTLYHLGVAYNFEKEIEEALEKIYKAYDEDATQDNLCTLALRFRLLRQHGWNASSDVFNKFKETKNGNFKESVASDVLGMLSLYEASYVGTKEDKILEEAISFTTRNLSAALPNMEPLLAERVAHSLELPLHKRLQRLEARYFITMYEKNNAHDEMLLEYAKLDYNLLQALHQNEMKELTKWWTKIDLVGKMKFPRDRVTECYFWPLGAFFEPQHSRGRIFATKITQLTSIIDDLYDVYGTQEELQLFTDVIQRWDMNAKKSLPDYIKPLYEALLSTLKDFEEELSLEGNAYRASFMQQAMKNICMAYFDEAKWYNRGTTPKVEEYLNSAEISCGYPVVATACFTGAGEITTKKLLEWIQSQPKYMKDTCRLCRIVDDIKTYKFEEERGHVASVVACYMEEHKCNEDEALEKLNEDVMNTWKDINKACMRPTPFPMVVMNIIRNLSRVMEILYQFGDGYTFADTVTKERLNLLLKDPIPV
|
Sesquiterpene synthase involved in the biosynthesis of volatile compounds that contribute to the characteristic flavors of black pepper. Mediates the conversion of (2E,6E)-farnesyl diphosphate (FPP) into beta-caryophyllene and, as a minor compound, into alpha-humulene.
|
A0A1V0E4A6
|
TPS2_PIPNI
|
Terpene synthase 2 (PnTPS2) (Cadinene synthase) (PnCDS) (EC 4.2.3.-) (Cadinol synthase) (PnCO) (EC 4.2.3.-)
|
MDAVSCAINALSAQAPPKHLGGNNVGRKSVTFPKDIWGDYFLKISPNEEKLDSWRVRAKELKEKVFDILSCAKGAEQVHIIDALYHLGVSYQFEKEIEEALKNMLTTYNDDTSTEDDLYTLALRFRLLRQNGFHASTKALNKFKDAHGSFREDLASDVMGLLSLYEASYAGTVDDLILDEALAFTKIHLKAALPHLDSHLAQRVSHSLELPLHKRIQRLEAREFISLCEKDDSIVIKELLEFAKLDYNILQALHQWELKELTKWWKKLNLVGKMTFARDRMTEIYFYVSGFFFEPQYSRGRIISSKILAICSVVDDEYDVYGTLDELQVFTDAICRLDVAAMENLPEYVKPLYEAIFFSLKEFEEELAREGNAYRVNYLREEVKNLCKSYLQETKWLHQRYIPTLEEYLLVSEISSTYTVIFNGCFVGCGEIATKEVFEWFQAFPKLLSDSARIGRIADDIMSCKFEQSRGHCPSAVECCMEEHQCTKEVALGNLDGVLGRAWKDMNKACMRPTPFPMEVLRPIVNLARMAEISYQYEDGYTFSGGKTKERISMLYKDPIPV
|
Sesquiterpene synthase involved in the biosynthesis of volatile compounds that contribute to the characteristic flavors of black pepper. Mediates the conversion of (2E,6E)-farnesyl diphosphate (FPP) into alpha-cadinene, delta-cadinene and delta-cadinol.
|
A0A1W2P872
|
NOVA2_MOUSE
|
RNA-binding protein Nova-2
|
MEPEAPDSRKRPLETPPEVVCTKRSNTGEEGEYFLKVLIPSYAAGSIIGKGGQTIVQLQKETGATIKLSKSKDFYPGTTERVCLVQGTAEALNAVHSFIAEKVREIPQAMTKPEVVNILQPQTTMNPDRAKQAKLIVPNSTAGLIIGKGGATVKAVMEQSGAWVQLSQKPEGINLQERVVTVSGEPEQVHKAVSAIVQKVQEDPQSSSCLNISYANVAGPVANSNPTGSPYASPADVLPAAAAASAAAASGLLGPAGLAGVGAFPAALPAFSGTDLLAISTALNTLASYGYNTNSLSLGLNSAAASGVLAAVAAGANPAAAAAANLLASYAGDAGAGPGAGAAPPPPPPPGALGSFALAAAANGYLGAGAGGAAGAGGAPLVAAAAAAGAAGGFLTAEKLAAESAKELVEIAVPENLVGAILGKGGKTLVEYQELTGARIQISKKGEFLPGTRNRRVTITGSPAATQAAQYLISQRVTYEQGVRASNPQKVG
|
Functions to regulate alternative splicing in neurons by binding pre-mRNA in a sequence-specific manner to activate exon inclusion or exclusion. It binds specifically to the sequences 5'-YCAY-3' and regulates splicing in only a subset of regulated exons. Binding to an exonic 5'-YCAY-3' cluster changes the protein complexes assembled on pre-mRNA, blocking U1 snRNP binding and exon inclusion, whereas binding to an intronic 5'-YCAY-3' cluster enhances spliceosome assembly and exon inclusion. With NOVA1, they perform unique biological functions in different brain areas and cell types. Uniquely regulates alternative splicing events of a series of axon guidance related genes during cortical development, being essential for central nervous system development by regulating neural networks wiring. Regulates differentially alternative splicing on the same transcripts expressed in different neurons. This includes functional differences in transcripts expressed in cortical and cerebellar excitatory versus inhibitory neurons where is required for, respectively, development of laminar structure and motor coordination and synapse formation. Also the regulation the regulation of intron retention can sequester the trans-acting splicing factor PTBP2, acting as a variable cis-acting scaffolding platform for PTBP2 across various natural conditions.
|
A0A1W5T1U1
|
POXE_PENOX
|
Hybrid PKS-NRPS synthetase poxE (PKS-NRPS) (EC 2.3.1.-) (EC 6.3.2.-) (Oxaleimides biosynthesis cluster protein E)
|
MAPSQAPREPIAIVGSGCRFPGESSSPSKLWELLQAPRDVQTEIPPTRFNPHGFYHPDNLHHGTSNVRHSYLLTEDHRHFDAQFFGIKPAEAHCIDPQQRLLMETVYESLESAGLRLEDLRGSETAVYVGLMCGDYADIVLRDPESFPMYLSTGTARSIMSNRISYFFDWHGPSMTIDTACSSSLVAVHEAVQTLRLGRSRVAVAAGSNLCLSPEPYIAESKLQMLSPTGRSRMWDIQADGYARGDGVAAVVLKTLSAALADGDHIECLIRETSVNQDGRTRGITMPSSEAQTRLIQDTYARAGLDPLKPQERCQYFEAHGTGTPTGDPLEAAAIRQAFFPGDNNQDRGCLFVGSIKTVVGHTEGTAGLAGVLKASLALRNGIIPPNLLFNQLNPKIKPFYTNLEIATAAKPWPVLPAGVPRRASVNSFGFGGTNAHAIIEAYEPALTAPSKSTEPDIAFIPFVFSAASESALRRMLELYAQHLSKNPTINARDLGWTLQARRSRFPFSIAVPGATTDQLRSNLETRLNSTDARQPLKIVKQESRPENPRILGVFTGQGAQWATMGRALYQSPKVRQIIQELDASLQALPVGERPSWTLASELTADASVSRIKAAEISQPMCTAVQVVLVQLLQSAGVVFDAVVGHSSGEIAAAYAAGFLSGTDAIRIAYYRGLCARLAQGAHGEKGAMMAVGTGVEDALELCAEPEFRGRMSVAAVNSSASVTLSGDADAITQAKEILDEEKKFARVLVVDKAYHSHHMQACSGRYLSCLAKARIAVSAPTDTKCVWYSTVRQGPVTEADLADLTGPYWNDNMVSPVLFAQAVETALAARGPFNMAVEVGPHPALRGPAQQTVQDVLETSLPYTPTLQRGMNDVEAMAECLGLLWQGLAPGFVDLSSYDAFLSQGAVSRVIKDLPRYSWDHDRVFWYESRVSRATRQRIAASHPILGTRCPDGVEQEFRWRNFLSLKELPWLTGHRIQGQIIFPGAGYISAAVDSARAMSSNESIQLVELQELLIRQAIVFEDENASVEILVSITDVTHHSKDMVRAQFSFYSAVGKESTQMTLNASGRLVITYGPVRKDALPVQRPSLVDMVDVPSERFYNALDPLGYSYTGRFRALKSMQRKLGIATGLVTRQEAADLSSVTLDPAMLDAAIQAVLLAKSFPGDGELWCSQVPKVIHRIAVNPTLCDPSGNGVESTFPLDAVLTMMKASDTQGDVDVYSADGQYTMIRMEGIHAVPLEATNADRDRPFFSGVVWGPAAPDSQTVNFDATATPEEYELAYVLERVATFYLRKIHLAFPMDHSARHEGPYVGLLNYATYVTQQVASGYHRYTQPHWARDTVAVIKSESQRFPNNIDLAVMHIIGEHMVDVISTRATILEHLTKDNLLSRYYEQAMGIGHFSDYLASVVEQIVHRYPQMKVLEIGAGTGMATKKVIQRVGHSFGSYTFTDISSGFFENAREIFASHQDQMVYKVLDAEKDPVAQGFGEQSYDLIVASFVLHATSHLETTLHNLRRLLKPGGYVVMLEVTNLEQSRLGYIFGSLPGWWLGANDGRILSPCVPTEEWDRLLKLTGFSGVDTFTSDADALPYPASAIVSQAVDETVDFLRNPLGTPSDFVNRATPVVLIGGASSSVRVIRDVVKRHLDTRFDQVQVVDRLSDFVAISPAVSNGLLTLNLSDLEEPVFQNMTADSLAALKLLYERSNYVLWVTEDARAGNPHQNQSLGFGRSMMVEMPHVQSQFLDLDRITETSSVASRIVDAALRFVGVNMPDRGGDVASAGLLWSTEPEIAVIGGRELLPRIKLNRSQNLRYNASRRAIAEDVDMDQKSVQLVRNGNAYVLEQGSTSGFGNQTPGYTRIRVDVSSLKSLHLGRGNALYLVAGTVLATGEKVIGFADKNSSIVDIPPSWMSHRPDISMAALILSIIARLFSRAILSSISPGGVLVVAEPDELLAPVLEWQASQQKIRVVFVTTQEDAPERPNWVVLHSQVHVRSLPKLAPTEPVTILDLSTGEEPSALALKLRNSLHPASAFERLTYWFSDHARRGEIHIPAEAMLTMYRPPMSPPASDSVIASHSFPVTDVSQIPAARCPLAVVDWQSTSHVPALIRPVDHYPMLKSNKTYWLVGLTGSLGLSLCAWMIHQGAQNVVLTSRNPKIDQIILQELRSLGARVEVYAGDVTNQESLRGVYDRICQTLPPVAGVGQGAMVLIDTMIKDMEIDAMQSVLQPKVKGSINLDELFSAERPLDFFIFFSSATCVTGNIGQSNYAAANMFMTGLAANRNRRGLAGSVMNIGAIMGVGYVTRETSEALQRNLLKSGHVWMSEQDFHTIFAEAILAGTPGSDANVEITCGLRITNASEEQRPLWSFNPRFQHLVVMEEQVEETYEQDKKGMSLKLQLREARTTDEIYEVIKECFIVKLQIMLGLDDAATNSITSKAADDLGIDSLNTVEIRSWFLKEMKVDIPVLRILGGATIGEIIKFVLEKLPSDMTPSLGLSPPTGAASKATSQPNPKPKVVVERRNVPRLEKKIVHSAGSRTSSSVTGTSKSVSPARSMDTASSQTSEAASPSIHTEEITKPLKPLAPLLKADVVSSNLGKVITPVEQTAALSVRKEPLSFGQSRFWFLKLYLEDQTTFNITCLLRMTGPLSVDSLSRAVTAVGQRHEALRTCFTVEDGQSPVQTILPESTLKLERQEYRTMADVNTATKKLTQHVYEMESGRLMRVILLSSAPNSSVHYVLVGYHHINMDGVSLEVFLHDLEKAYRGQPLSSDLLQYPDYAAKQRQERNQGAWQDDLTFWKNEMVGSNLEIPLLPLASVAIRKPLTQYRHHRVEQRLDARLGAQIRQLCQSIKATPSHFYLATFTTLLARLTRTREIWVGMADANRIQAETADSIGNYLNLLALRMQYDPDQPFVASVQAARKKSYGALAHSRIPFDVLLSELQVPRSSTHSPLFQVFMDYRHDVREKRMFGDCQLEGVEYEMGRTAYDIALDVVDTADDGPLIIMGLQESLYSPDTAQMLLNSFLEMVRAFAQDSKQPGGHVSLFSASDLEKALALGNGSVVASQWPATLSHRIDDMAKQYPQKLALNDGDNLRLTFQQMSQRADSIASALLSANVSRQQRVAVFQHPSSDCICSILAILRIGATYVPLDLRLELARLRSIVQDCEPTVFLVDSHTQSQAPDLMLTRPAMTINIADLPRIAPFPVMNRAAAEDEAVILYTSGSTGNPKGVPLTHENLRVNIEGNQAEFQFGPDDCLLQQIAFSFDFSVWQIFMALANGASLFIAPSTHRGDPVALMDLVVREDITITGATPSEYRSWFQHGDLARLKTSQWKTAVSAGEAMTTNMIRDFQALNKSDLRLVNGYGPTEASMSSNKLVVPYLTNKDHPEEWMEKGAVVAGYTAPNYSIYIVDEAMNLLPIGLPGQILIGGPGIASGYLNNKELSCIRFINDKYASPEQRACGWRWAHLTGDRGRIGADGRLRIEGRIEGDTQVKLRGYRIDLQDVEAAMLKASPGAFKDLVVSLHQATQALVAHVVFSQHYPAHKHSQALEIKSLELPRYMWPARTVSIDQMPVTVHGKLDRKALQTMDLPAIEPMKQTSTAHLNEAQAQMVQLWEEVISKDILAAHHIVAESDFFAVGGTSMLLVDLQRQIKSWFKMEIALAELFSANTLEKMALLIKPQEDIATPAAVDAAPPSSPSPLALTASLPPAPTTINWSEEVQLPRVLREQTSSGTTVSVPEKTSGLRLVLTGATGFIGQALLQQLTANPAISTVHCIAVRDPSAIPAHEKILVHAGDLTHAALGLAPVEAQAIFREVDAVIHNGADVSFMKSYHSLRRTNVESTIALIQNSLSRQIPFHYISSSGIANLAGTTTFAEVSAASFIPPTDGSQGYLATKWVSERLLEEAHREFGLPVYIHRPSSVTGSNAPPLDLMDNLMTYARRLKAVPMPERSSWKGYLDFVPVEQVVRDVTGDVLSAAGTVPSARASKVHYIHHLGRQVSLTGLHRYLERETGAVYRVLKMGEWLEEATQVGMDALLRTYLESMDKEDVKVVFPRLVAGKRHASTVGVAKGVKIGESWLEKGKTLLFSW
|
Hybrid PKS-NRPS synthetase part of the gene cluster that mediates the biosynthesis of oxaleimides, cytotoxic compounds containing an unusual disubstituted succinimide moiety. The first step of the pathway is provided by the HR-PKS poxF that serves in a new mode of collaborative biosynthesis with the PKS-NRPS poxE, by providing the olefin containing amino acid substrate via the synthesis of an ACP-bound dec-4-enoate. The cytochrome P450 monooxygenase poxM-catalyzed oxidation at the alpha-position creates the enzyme-bound 2-hydroxydec-4-enoyl-ACP thioester, which may be prone to spontaneous hydrolysis to yield 2-hydroxydec-4-enoic acid due to increased electrophilicity of the carbonyl. 2-hydroxydec-4-enoic acid can then be further oxidized by poxM to yield the alpha-ketoacid 2-oxodec-4-enoicacid, which is reductively aminated by the aminotransferase poxL to yield (S,E)-2-aminodec-4-enoic acid. The Hybrid PKS-NRPS synthetase poxE then performs condensation between the octaketide product of its PKS modules and the amino group of (S,E)-2-aminodec-4-enoic acid which is activated and incorporated by the adenylation domain. The resulting aminoacyl product can be cyclized by the Diels-Alderase PoxQ and reductively released by the reductive (R) domain of poxE to yield an aldehyde intermediate (Probable). The released aldehyde is then substrate for a Knoevenagel condensation by the hydrolyase poxO followed by an oxidation at the 5-position of the pyrrolidone ring. The presence of the olefin from the amino acid building block allows for migration of the substituted allyl group to occur. This allylic transposition reaction takes place in a conjugate addition, semipinacol-like fashion to yield a succinimide intermediate. Iterative two-electron oxidations of the C7 methyl of the succinimide intermediate to the carboxylic acid can be catalyzed by one of two remaining cytochrome P450 monooxygenasess poxC or poxD to yield oxaleimide A. Subsequent oxidation yields the maleimide scaffold oxaleimide I. Both oxaleimide A and oxaleimide I can undergo oxidative modifications in the decalin ring to yield the series of products oxaleimides B to H.
|
A0A1Z0YU59
|
MAMB1_DENAN
|
Mambaquaretin-1 (MQ-1) (MQ1) (Upsilon-Da2a)
|
RPSFCNLPVKPGPCNGFFSAFYYSQKTNKCHSFTYGGCKGNANRFSTIEKCRRTCVG
|
Selectively interacts with vasopressin V2 receptor (V2R/AVPR2) and fully inhibits three major signaling pathways of this receptor that are GalphaS protein, the interaction with beta-arrestin and activation of MAP kinase. Inhibits vasopressin binding human V2R in the nanomolar range (Ki=5.02 nM), and also potently inhibits vasopressin-induced cAMP production (IC(50)=94 nM). In vivo, this protein shows an aquaretic effect. Urine output increases and urine osmolality decreases dramatically under treatment with this protein, without differences observed between healthy mice and the pcy mice model of the autosomal-dominant polycystic kidney disease (ADPKD). This protein does not modify electrolyte, protein and urea excretions in the urine samples, but produces a 3-fold decrease of creatinine levels. Intraperitoneal injection of this protein into the pcy mice significantly reduces the number of renal cysts and the total area of cysts. This protein also shows high efficacy in preventing hyponatremia in rat models (induced by DAVP). Is highly visible in mice liver and kidney after intravenous injection. Is rapidly eliminated in the liver, whereas it exhibits slow elimination in the kidney due to the high expression of V2R which acts as a reservoir. In addition, its elimination from blood is rapid. Fluorescent MQ1 probes could also be used for imaging V2R-overexpressing cancer cells note that these probes label the three renal cancer cell lines CAKI-2, ACHN and A498 that highly express V2R. In vivo, does not show any toxicity on animals, even at highest doses tested, such as prostration, spidy coat, appetite or weight loss.
|
A0A1Z2R986
|
EGLN_DANRE
|
Endoglin
|
MKSICCVLVLCLLLCRRSTASESICELKDVSGNSNDWIVLREKPLGCWTDFQTENGTEVHIINLEDNPSVFTVNLLKANKSVVIFTSSSAQSSHAMLFDNPAVSIYVTNKTSLTFIHPTQKPLQILTAPPAGNVSAVLRWAAETFGGVTSVTNARNPKTITFTGVKGSQNSSRCELMPETPTEKPFIHLELNEPIEALKSCYMKHEGEKLHIINIPDGVTIRHVSVHLLSDCNVVLRGPAGTHWIIKNSLRIGILSNNQIHLQSFPLRPRMAISDNPTDIRQKALSYFSSGFISSYSEIRLNVTNVELWITDYSISSAPTEVEKTTPSPTSPPFPVQMQLFSSPDFTTPIDNNSRVLSDKRVYAEISSQTFREASIRVSSCWVRSTPVTREMPFREEPCFIKDCPKRLSFSFQILQDLPAGSWDLECAVKLCGVKRINNEESCTSETPVKRNVQVKPFTPTTNSCFEFGLSAVLGIAFGGFLIGVLLTGALWFIKIRTGHPVALGMRSTAAELSVLSISGCPCGLTKRQPVPTHPSPSENSSANASIGSTQSTPTSSMA
|
Vascular endothelium glycoprotein that plays an important role in the regulation of angiogenesis. Required for normal structure and integrity of adult vasculature. Important for endothelial cell shape changes in response to blood flow, which drive vascular remodeling and establishment of normal vascular morphology during angiogenesis.
|
A0A218N034
|
WTF4_SCHKA
|
Meiotic driver wtf4
|
MKNKDYPLRSSMDELSTKNDNEIDLEKGPLPEYNSEDESTLPPYSEIWKYIKTVSEDSSTGPTETTNPNVERRQEFKDSHPNIYSLLRLLISVLAVIVVFFTAWVCVNPLEKSIFGKVAFFVTIGITCPILLITIFCFFETWTQAVAQCIKVTVIFLAQCVKVTAVGLYNSREKWVVIIWLLWVVICYTLFLRSKFGNLNLNKALICSTCSISAALLLFLLYVRLPFWTLKHMFSGLFQVLGVQSCVVIVTKGLTYLFDKHIDATGYEIEASSLFVIGNFLFFYEMECPGALKRMPKFIRNGIASFLEGIGNIGRAFRGANDNNDIPLGEMEVESEV
|
Promotes unequal transmission of alleles from the parental zygote to progeny spores by acting as poison/antidote system where the poison and antidote proteins are produced from the same locus the poison component is trans-acting and targets all spores within an ascus whereas the antidote component is spore-specific, leading to poisoning of all progeny that do not inherit the allele.
|
A0A219CMY0
|
BMNL5_BOMOR
|
Bombinin-like peptides [Cleaved into: Bombinin-BO1; Bombinin H-BO1]
|
MNFKYIIAVSFLIASAYARSEEYDIQSLSQRDVLEEESLRKIRGIGSAILSAGKSIIKGLAKGLAEHFGKRTAEDHEVMKRLEAAMRDLDSLDYPEEASERETRGFNQEEKEKRIIGPVLGLVGKALGGLLG
|
[Bombinin-BO1]: Has antimicrobial activity against Gram-negative bacterium E.coli (MIC=26.3 uM), Gram-positive bacterium S.aureus (MIC=26.3 uM) and yeast C.albicans (MIC=52.5 uM). Has moderate hemolytic activity towards human erythrocytes at a concentration of 52.2 uM.
|
A0A250YGJ5
|
SIR6_CASCN
|
NAD-dependent protein deacylase sirtuin-6 (EC 2.3.1.-) (NAD-dependent protein deacetylase sirtuin-6) (EC 2.3.1.286) (Protein mono-ADP-ribosyltransferase sirtuin-6) (EC 2.4.2.-)
|
MSVNYAAGLSPYADKGKCGLPEIFDPPEELERKVWELARLVRQSSNVVFHTGAGISTASGIPDFRGPHGVWTMEERGLAPKFDTTFENARPTQTHMALVQLERVGLLHFVVSQNVDGLHVRSGFPRDKLAELHGNMFVEECAKCKTQYVRDTVVGTMGLKTTGRLCTVAKARGLRACRGELRDTILDWEDALPDRDLALADEASRNADLSITLGTSLQIRPSGNLPLATKRRGGKLVIVNLQPTKHDRHADLRIHGYVDDVMTQLMKHLGLEIPAWDGPRVLEKALPPLPRPPTPKLEPTDKSLAQLNGSVPADSKPEPCTWHNGSQPASPKREQPDSPAPRRPPKRVKAEVTPS
|
NAD-dependent protein deacetylase, deacylase and mono-ADP-ribosyltransferase that plays an essential role in DNA damage repair, telomere maintenance, metabolic homeostasis, inflammation, tumorigenesis and aging (By similarity). Displays protein-lysine deacetylase or defatty-acylase (demyristoylase and depalmitoylase) activity, depending on the context (By similarity). Acts as a key histone deacetylase by catalyzing deacetylation of histone H3 at 'Lys-9', 'Lys-18' and 'Lys-56' (H3K9ac, H3K18ac and H3K56ac, respectively), suppressing target gene expression of several transcription factors, including NF-kappa-B. Acts as an inhibitor of transcription elongation by mediating deacetylation of H3K9ac and H3K56ac, preventing release of NELFE from chromatin and causing transcriptional pausing (By similarity). Involved in DNA repair by promoting double-strand break (DSB) repair: acts as a DSB sensor by recognizing and binding DSB sites, leading to (1) recruitment of DNA repair proteins, such as SMARCA5/SNF2H, and (2) deacetylation of histone H3K9ac and H3K56ac (By similarity). SIRT6 participation to DSB repair is probably involved in extension of life span. Also promotes DNA repair by deacetylating non-histone proteins, such as DDB2 and p53/TP53 (By similarity). Specifically deacetylates H3K18ac at pericentric heterochromatin, thereby maintaining pericentric heterochromatin silencing at centromeres and protecting against genomic instability and cellular senescence (By similarity). Involved in telomere maintenance by catalyzing deacetylation of histone H3 in telomeric chromatin, regulating telomere position effect and telomere movement in response to DNA damage (By similarity). Required for embryonic stem cell differentiation by mediating histone deacetylation of H3K9ac (By similarity). Plays a major role in metabolism by regulating processes such as glycolysis, gluconeogenesis, insulin secretion and lipid metabolism (By similarity). Inhibits glycolysis via histone deacetylase activity and by acting as a corepressor of the transcription factor HIF1A, thereby controlling the expression of multiple glycolytic genes (By similarity). Has tumor suppressor activity by repressing glycolysis, thereby inhibiting the Warburg effect (By similarity). Also regulates glycolysis and tumorigenesis by mediating deacetylation and nuclear export of non-histone proteins, such as isoform M2 of PKM (PKM2) (By similarity). Acts as a negative regulator of gluconeogenesis by mediating deacetylation of non-histone proteins, such as FOXO1 and KAT2A/GCN5 (By similarity). Promotes beta-oxidation of fatty acids during fasting by catalyzing deacetylation of NCOA2, inducing coactivation of PPARA (By similarity). Acts as a regulator of lipid catabolism in brown adipocytes, both by catalyzing deacetylation of histones and non-histone proteins, such as FOXO1 (By similarity). Also acts as a regulator of circadian rhythms, both by regulating expression of clock-controlled genes involved in lipid and carbohydrate metabolism, and by catalyzing deacetylation of PER2 (By similarity). The defatty-acylase activity is specifically involved in regulation of protein secretion (By similarity). Has high activity toward long-chain fatty acyl groups and mediates protein-lysine demyristoylation and depalmitoylation of target proteins, such as RRAS2 and TNF, thereby regulating their secretion (By similarity). Also acts as a mono-ADP-ribosyltransferase by mediating mono-ADP-ribosylation of PARP1, TRIM28/KAP1 or SMARCC2/BAF170 (By similarity). Mono-ADP-ribosyltransferase activity is involved in DNA repair, cellular senescence, repression of LINE-1 retrotransposon elements and regulation of transcription (By similarity).
|
A0A286R227
|
NIA_ULVPR
|
Nitrate reductase [NADH] (NR) (EC 1.7.1.1)
|
MGVRHSASKDYIAGRPLVPGEAPLDKKNSNFSSWKPVTEIDDRDAKCADNWVPRHPDLIRLTGKHPFNSEPPHADVMKEGWLTPVSMHFVRNHGAVPRLEWGSHRITITGLVERPMEITMDDIAKLPAVTVPCLLTCCGNRRKEVNMVKNSQGFSWGPGAVSVNNWTGARLSDVLKLVGVKSQAQGAKYVHFCGPKGELPKGVDGSYGTALTLGHALDPSMDVLIAYKQNGQFLHPDHGFPCRMLIPGWIGGRSVKWLSHLHVSDKDSQNWYHFHDNKVLPPHVDAESAAKQGWWKDPSFILKELNINSTISSPGHDERILMDQNRRYTMKGYAYSGGGRKIVRVEVSFNGGETWSHPAKIIVTETPNQAGKHWTWVHWELPVDTSQFFTATEVVCRAWDESQNTQPAVLTWTLLGQGNNSMFRLRLHKEVDPQGRLCIRFQQPAPILPGPLGNVGWREQEAGSAVPSAPAAVAAAAPGLDSTKKYVTKAMLEQHVEEASVWFAYKGKVYDGTKFLDDHPGGADSILMAGGEDATEDFDAVHSDSAKKQLEQFYIAELAPEGVPVPANLLYGGVDAAVVVMPGTAAAPLPAIDVDAPFLNPKKQKAAELKEKIKISHDVTLFRFGLEHDEQLLGLPTGKHMLIRKKVTNAEGDEEVVMRAYTPTTANETRGHFDLVVKIYKANVHPKFPEGGKFSQILEALEVGDTVEVKGPIGHFHYDRPGHYKNHKLESEVKRINMIAGGTGLTPMYQVMKAILSNPSDLTEIRLLYANQTEADILLRPELEALAKSHPDRVKIHYTVDRPTPGWKYSSGFIDLDMCERALFRYEPGTISVLCGPPPMLKFACHPNLEKMGFEKGVTSIEF
|
Nitrate reductase is a key enzyme involved in the first step of nitrate assimilation in plants, fungi and bacteria.
|
A0A286Y9D1
|
PHF14_DANRE
|
PHD finger protein 14
|
MDRGSKRRQVKPLADSLLDALDYDSSDDSDFKVGESSGSEGTGNGSDEEGSKESAAGSESDSDAAAASADEEGIDDLETKDLNQEDDEEEKVKESFSEETSSKETGGSSRSRKKGEKSSDMEPNGSATTEENSAEPKKWNLRRNRPMLDFTTMEELNEMDDYDSEDDNDWRPTQGKKKGKASSGKEKEGSGEEDDDDDDGGSDEEDNEDDNDDDDDDDDEGNDDESSSSDSEEEGKKPKKKAGKNTGAFDEEETNDSHSTSHGKGNEDSLLERPQTWSSQRMEHILICCVCLGDNSEDADEIIQCDNCGVTVHEGCYGVDGESDSIMSSASENSTEPWFCDACKNGVSPSCELCPSQDGIFKETDAGRWVHVVCALYVPGVAFGDIDKLRPVTLTEMNYSKYGAKECSLCEDTRFARTGVCISCDAGMCRSFFHVTCAQREGLLSEAAAEEDIADPFFAYCKQHADRFDRKWKRKNYLALQSYCKVSLQEREKQLTPEAQARITTRLQQYRAKAELSRNTRPQAWVPREKLPRPLTSSASAIRKLMRKAELMGISTDIFPVDTSDISASVDGRRKHKQPALTADFVNYYLERNMRMIQIQDNIVEQKNLKDKLESEQEKLHMEYDKLCESLEDLQNVNGQLRTEGQSIWSMMGGIVGQKLNVPAVLKAPKERKPSKKEGGSPGKSSSLPAMLYSCGICKKNQDQHLLLLCDTCKLHYHLGCLDPPLTRMPKKTKNSYWQCSECDQASSDEADIAMETLPDGTKRSRRQIKGPIKFIPQEMSPEPKKPQVRGTRTRGQKRKRMSICEEEKMEEPLPRERRQRQSTLQKKPKADDTRTECTTCKGPGDNENLVRCDECRLCYHFGCLDPPLKKSPKQTGYGWICQECDTSSSKEEEAQEVEEESVNEETAEQEIPD
|
Histone-binding protein. Binds preferentially to unmodified histone H3 but can also bind to a lesser extent to histone H3 trimethylated at 'Lys-9' (H3K9me3) as well as to histone H3 monomethylated at 'Lys-27' (H3K27ac) and trimethylated at 'Lys-27' (H3K27me3). Represses PDGFRA expression, thus playing a role in regulation of mesenchymal cell proliferation (By similarity).
|
A0A287B8J2
|
DCTN1_PIG
|
Dynactin subunit 1 (150 kDa dynein-associated polypeptide) (p150-glued)
|
MAQSKRHVYSRTPSGSRMSAEASARPLRVGSRVEVIGKGHRGTVAYVGATLFATGKWVGVILDEAKGKNDGTVQGRKYFTCDEGHGIFVRQSQIQVFEDGADTTSPETPDSSASKVLRREGTDSNAKTSKLRGPKPKKAPTARKTTTRRPKPTRPASTGVAGASSSLGPSGSASAGELSSSEPSTPAQTPLAAPIIPTPALTSPGAAPPLPSPSKEEEGLRAQVRDLEEKLETLRLKRAEDKAKLKELEKHKIQLEQVQEWKSKMQEQQADLQRRLKEARKEAKEALEAKERYMEEMADTADAIEMATLDKEMAEERAESLQQEVEALKERVDELTTDLEILKAEIEEKGSDGAASSYQLKQLEEQNARLKDALVRMRDLSSSEKQEHVKLQKLMEKKNQELEVVRQQRERLQEELSQAESTIDELKEQVDAALGAEEMVEMLTDRNLNLEEKVRELRETVGDLEAMNEMNDELQENARETELELREQLDMAGARVREAQKRVEAAQETVADYQQTIKKYRQLTAHLQDVNRELTNQQEASVERQQQPPPETFDFKIKFAETKAHAKAIEMELRQMEVAQANRHMSLLTAFMPDSFLRPGGDHDCVLVLLLMPRLICKAELIRKQAQEKFDLSENCSERPGLRGAAGEQLSFAAGLVYSLSLLQATLHRYEHALSQCSVDVYKKVGSLYPEMSAHERSLDFLIELLHKDQLDETVNVEPLTKAIKYYQHLYSIHLAEQPEDSTMQLADHIKFTQSALDCMSVEVGRLRAFLQGGQEASDIALLLRDLETSCSDIRQFCKKIRRRMPGTDAPGIPAALAFGAQVSDTLLDCRKHLTWVVAVLQEVAAAAAQLIAPLAENEGLPVAALEELAFKASEQIYGTPSSSPYECLRQSCNILISTMNKLATAMQEGEYDAERPPSKPPPVELRAAALRAEITDAEGLGLKLEDRETVIKELKKSLKIKGEELSEANVRLSLLEKKLDSAAKDADERIEKVQTRLEETQALLRKKEKEFEETMDALQADIDQLEAEKAELKQRLNSQSKRTIEGIRGPPPSGIATLVSGIAGEEQQRGGAPGQAPGIVPGPGLVKDSPLLLQQISAMRLHISQLQHENSVLKGAQMKASLAALPPLHVAKLSLPPHEGPGSELAAGALYRKTNQLLETLNQLSTHTHVVDITRSSPAAKSPSAQLLEQVTQLKSLSDTIEKLKDEVLKETVSQRPGATVPTDFATFPSSAFLRAKEEQQDDTVYMGKVTFSCAAGLGQRHRLVLTQEQLHQLHDRLIS
|
Part of the dynactin complex that activates the molecular motor dynein for ultra-processive transport along microtubules. Plays a key role in dynein-mediated retrograde transport of vesicles and organelles along microtubules by recruiting and tethering dynein to microtubules. Binds to both dynein and microtubules providing a link between specific cargos, microtubules and dynein. Essential for targeting dynein to microtubule plus ends, recruiting dynein to membranous cargos and enhancing dynein processivity (the ability to move along a microtubule for a long distance without falling off the track). Can also act as a brake to slow the dynein motor during motility along the microtubule. Can regulate microtubule stability by promoting microtubule formation, nucleation and polymerization and by inhibiting microtubule catastrophe in neurons. Inhibits microtubule catastrophe by binding both to microtubules and to tubulin, leading to enhanced microtubule stability along the axon. Plays a role in metaphase spindle orientation. Plays a role in centriole cohesion and subdistal appendage organization and function. Its recruitment to the centriole in a KIF3A-dependent manner is essential for the maintenance of centriole cohesion and the formation of subdistal appendage. Also required for microtubule anchoring at the mother centriole. Plays a role in primary cilia formation (By similarity).
|
A0A291NUG3
|
STING_PTEPA
|
Stimulator of interferon genes protein (STING)
|
MLHSSLHPSIPQPRGRRAKKAAFVLLSVCLVVLWDLGERPEHILQWLMLHLASLQLGLLFKGVCSLVEELRHVHSRYQGSYWKAVRACLGCPIRCGTLLLLSCYFYTPFPNTTHLPFTWTLALLGLSQALSILLDLQDLAPAEVSAVCERRNLNVAQGMAWSFYIGYLRLILPGLPARIHSYNQHHNNLLRGAGSHRLYILFPLDCGVPDDLSMVDPNIRFLHELPLQKADRAGIKSRVYTNSVYELLENGRPVGACVLEYATPLQTLFAMSQDSRAGFSREDRLEQAKLFCKTLEDILADAPECQNNCRLVVYQEPAEGGNFSLSQEILRHLKQEEKEEVTVDSARTSVMPDPSMLPQGPELLISSMDQPLPLRTDVF
|
Facilitator of innate immune signaling that acts as a sensor of cytosolic DNA from bacteria and viruses and promotes low production of type I interferon (IFN-alpha and IFN-beta). Compared to other mammals, STING1-dependent type I interferon induction is strongly reduced in bats, suggesting that the cGAS-STING pathway promotes a limited inflammatory response. Innate immune response is triggered in response to non-CpG double-stranded DNA from viruses and bacteria delivered to the cytoplasm (By similarity). Acts by binding cyclic dinucleotides: recognizes and binds cyclic di-GMP (c-di-GMP), a second messenger produced by bacteria, and cyclic GMP-AMP (cGAMP), a messenger produced by CGAS in response to DNA virus in the cytosol (By similarity). Upon binding of c-di-GMP or cGAMP, STING1 oligomerizes, translocates from the endoplasmic reticulum and is phosphorylated by TBK1 on the pLxIS motif, leading to recruitment and subsequent activation of the transcription factor IRF3 to induce expression of type I interferon and exert a potent anti-viral state (By similarity). In addition to promote the production of type I interferons, plays a direct role in autophagy (By similarity). Following cGAMP-binding, STING1 buds from the endoplasmic reticulum into COPII vesicles, which then form the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) (By similarity). The ERGIC serves as the membrane source for WIPI2 recruitment and LC3 lipidation, leading to formation of autophagosomes that target cytosolic DNA or DNA viruses for degradation by the lysosome (By similarity). The autophagy- and interferon-inducing activities can be uncoupled and autophagy induction is independent of TBK1 phosphorylation (By similarity).
|
A0A291NUI4
|
STING_RHIFE
|
Stimulator of interferon genes protein (STING)
|
MPHSSLHPSIPRPRGHRAKKAAFVLLSTCLAALWELGEPADHILRWLVLHLASEQLGLLFKGLCSLAEEIRHVHSRYQGSYWRAFRACLGCPIRCGVLLLLSCYCYTFLPNTAGLPFAWIVALLGLSQALNILLDLQGLAPAVVSTVCEQGNFNVAHGLAWSYYIGYLRLILPGLQARIHTYNQRHNNTVRGTGVHKLYILLPLDCGVPDDLSVADPNIRFLHELPKQSADRAGIKGRVYTNSIYEILENGKPVGTCVLEYATPLQTLFAMSQDSRAGFSREERLEQAKLFCQTLGDILADVPESQYCRLIVYLDAAEGSSFSLSQEILKHLKQEEKEEVTVGTMGSSGVLESSTLDKEPQLLISGMDQPLPLRTDVF
|
Facilitator of innate immune signaling that acts as a sensor of cytosolic DNA from bacteria and viruses and promotes low production of type I interferon (IFN-alpha and IFN-beta). Compared to other mammals, STING1-dependent type I interferon induction is strongly reduced in bats, suggesting that the cGAS-STING pathway promotes a limited inflammatory response. Innate immune response is triggered in response to non-CpG double-stranded DNA from viruses and bacteria delivered to the cytoplasm (By similarity). Acts by binding cyclic dinucleotides: recognizes and binds cyclic di-GMP (c-di-GMP), a second messenger produced by bacteria, and cyclic GMP-AMP (cGAMP), a messenger produced by CGAS in response to DNA virus in the cytosol (By similarity). Upon binding of c-di-GMP or cGAMP, STING1 oligomerizes, translocates from the endoplasmic reticulum and is phosphorylated by TBK1 on the pLxIS motif, leading to recruitment and subsequent activation of the transcription factor IRF3 to induce expression of type I interferon and exert a potent anti-viral state (By similarity). In addition to promote the production of type I interferons, plays a direct role in autophagy (By similarity). Following cGAMP-binding, STING1 buds from the endoplasmic reticulum into COPII vesicles, which then form the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) (By similarity). The ERGIC serves as the membrane source for WIPI2 recruitment and LC3 lipidation, leading to formation of autophagosomes that target cytosolic DNA or DNA viruses for degradation by the lysosome (By similarity). The autophagy- and interferon-inducing activities can be uncoupled and autophagy induction is independent of TBK1 phosphorylation (By similarity).
|
A0A291NUI5
|
STING_EIDHE
|
Stimulator of interferon genes protein (STING)
|
MSHSSLHPSIPWPRGHKAKVAAFVLLIVCLAALWKLGEPSDHLLQWLVLHLASLHLRLLFKRVCCLAEELCHIHPRYQGNYSRAVRACLGCPIRYGAVLLLSCYFYVSLPNTVDLPLTWMLAHLGLSEALNILLGLQSLTPAEISTICEQRNFNVAHGLAWSYYIGYLQLILPGLRARIHTYNQLHSNTLQGVGSHRLYILFPLDCGVLDDLSAADPNIRFLHELPRQSADRAGIKGRVYTNSVYELLEKGKPVGTCVLEYATPLQTLFAMSQDGRAGFSQEDRLEQAKLFCRTLEDILADAPESQKNCRLIVYQEPTEESDFSLSQEILKHLRQEEREEVTMGTAGTFVAPGSSTLHQEPELLISGMDQPLPLRTDIF
|
Facilitator of innate immune signaling that acts as a sensor of cytosolic DNA from bacteria and viruses and promotes low production of type I interferon (IFN-alpha and IFN-beta). Compared to other mammals, STING1-dependent type I interferon induction is strongly reduced in bats, suggesting that the cGAS-STING pathway promotes a limited inflammatory response. Innate immune response is triggered in response to non-CpG double-stranded DNA from viruses and bacteria delivered to the cytoplasm (By similarity). Acts by binding cyclic dinucleotides: recognizes and binds cyclic di-GMP (c-di-GMP), a second messenger produced by bacteria, and cyclic GMP-AMP (cGAMP), a messenger produced by CGAS in response to DNA virus in the cytosol (By similarity). Upon binding of c-di-GMP or cGAMP, STING1 oligomerizes, translocates from the endoplasmic reticulum and is phosphorylated by TBK1 on the pLxIS motif, leading to recruitment and subsequent activation of the transcription factor IRF3 to induce expression of type I interferon and exert a potent anti-viral state (By similarity). In addition to promote the production of type I interferons, plays a direct role in autophagy (By similarity). Following cGAMP-binding, STING1 buds from the endoplasmic reticulum into COPII vesicles, which then form the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) (By similarity). The ERGIC serves as the membrane source for WIPI2 recruitment and LC3 lipidation, leading to formation of autophagosomes that target cytosolic DNA or DNA viruses for degradation by the lysosome (By similarity). The autophagy- and interferon-inducing activities can be uncoupled and autophagy induction is independent of TBK1 phosphorylation (By similarity).
|
A0A2H4DGV8
|
C7BL6_INUHU
|
Germacrene A acid 8-beta-hydroxylase (Ih8H) (IhG8H) (EC 1.14.14.168) (Cytochrome P450 71BL6) (Germacrene A acid 8-alpha-hydroxylase) (EC 1.14.14.170)
|
MEPFTTFSLVASSLILLICWALVKANKPAKNLPPGPPKLPIIGNMHQLESQSPHRVLRKLSRKYGPIMHLQLGQVPTVVISTPRLVEEVVKHHDINFADRPTNTTSQIFYYNNQNVAWSSYGNYWRQIKKIVTLELLSVKKVRSFSSIRAEELTRAVKSVEPSVGSTINFRDLTSQTVNNMVSRATLGDVCKERHILLDTMNDILKTFNSFNVVNFFPSLQFLNVITGKKAKWLKIHKQLDHILENILEEHKSKPKGNQDDEDLIDVLLRVKDAGGQELPITNDNVKAITLEMLTAGTSSSSMTIEWAFCELMRHPEVMKKVQSDVRSAVKGNKVTEDDIQNMHYLKLVVKETLRLHGVPILVPRQNREDCNVLGYHIPAKTKILINAWACGTDPDTWEDPESFIPERFEKSSVSYFGTDFQLIPFGTGRRICPGVNFGIGTVEAVLSNFLYHFDWKLPDGVKPQDIDMTEVTGISTLPKYPLHIVPVSTVSQQK
|
Involved in the biosynthesis of germacrene-derived sesquiterpene lactones. Hydroxylates germacrene A acid to 8-beta-hydroxy-germacrene A and 8-alpha-hydroxy-germacrene A acids. Unlike 8-alpha-hydroxy-germacrene A acid with is spontaneously converted into inunolide (12, 8-alpha), 8-beta-hydroxy-germacrene A cannot undergo spontaneous lactonization.
|
A0A2I0BVG8
|
CDPK1_PLAFO
|
Calcium-dependent protein kinase 1 (EC 2.7.11.1) (PfCDPK1)
|
MGCSQSSNVKDFKTRRSKFTNGNNYGKSGNNKNSEDLAINPGMYVRKKEGKIGESYFKVRKLGSGAYGEVLLCREKHGHGEKAIKVIKKSQFDKMKYSITNKIECDDKIHEEIYNEISLLKSLDHPNIIKLFDVFEDKKYFYLVTEFYEGGELFEQIINRHKFDECDAANIMKQILSGICYLHKHNIVHRDIKPENILLENKHSLLNIKIVDFGLSSFFSKDNKLRDRLGTAYYIAPEVLRKKYNEKCDVWSCGVILYILLCGYPPFGGQNDQDIIKKVEKGKYYFDFNDWKNISEEAKELIKLMLTYDYNKRITAKEALNSKWIKKYANNINKSDQKTLCGALSNMRKFEGSQKLAQAAILFIGSKLTTLEERKELTDIFKKLDKNGDGQLDKKELIEGYNILRSFKNELGELKNVEEEVDNILKEVDFDKNGYIEYSEFISVCMDKQILFSEERLRDAFNLFDTDKSGKITKEELANLFGLTSISEQMWNEVLGEADKNKDNMIDFDEFVNMMHKICDNKSS
|
Calcium-dependent protein kinase which acts as a sensor and effector of intracellular Ca(2+) levels probably in part downstream of cGMP-activated PKG kinase. By phosphorylating various proteins, required for microneme secretion and thus merozoite egress from and invasion of host erythrocytes (By similarity). During gametogenesis, essential for the development of both male and female gametes. Phosphorylates SERA5 p50 which enhances SERA5 p50 protease activity however, SERA5 p50 protease activity has been shown in other studies to be controversial. Probably by phosphorylating SERA5 p50, plays a role in merozoite egress from host erythrocytes. Probably prior or during merozoite invasion of host erythrocytes, phosphorylates rhoptry protein RhopH3 which is required for RhopH3 localization to rhoptries and for its secretion. Probably in late schizonts, phosphorylates myosin A tail domain-interacting protein MTIP and glideosome-associated protein 45 GAP45, both of which are components of the motor complex that generates the force required by the parasite to invade host cells. In late schizonts, phosphorylates inner membrane complex protein IMC1g. In late schizonts, phosphorylates PKA regulatory subunit PKAr in a calcium-dependent manner, which may contribute to the dissociation of regulatory PKAr and catalytic PKAc subunits and promote the activation of PKAc. May phosphorylate raf kinase inhibitory protein RKIP which in turn may regulate CDPK1 catalytic activity (By similarity). May phosphorylate proteins of the host erythrocyte membranes (By similarity).
|
A0A2I0C265
|
PLM9_PLAFO
|
Plasmepsin IX (EC 3.4.23.-) (Plasmepsin 9)
|
MFFINFKKIKKKQFPIYLTQHRIITVFLIFIYFINLKDCFHINNSRILSDVDKHRGLYYNIPKCNVCHKCSICTHENGEAQNVIPMVAIPSKRKHIQDINKEREENKYPLHIFEEKDIYNNKDNVVKKEDIYKLRKKKKQKKNCLNFLEKDTMFLSPSHDKETFHINHMNKIKDEKYKQEYEEEKEIYDNTNTSQEKNETNNEQNLNINLINNDKVTLPLQQLEDSQYVGYIQIGTPPQTIRPIFDTGSTNIWIVSTKCKDETCLKVHRYNHKLSSSFKYYEPHTNLDIMFGTGIIQGVIGVETFKIGPFEIKNQSFGLVKREKASDNKSNVFERINFEGIVGLAFPEMLSTGKSTLYENLMSSYKLQHNEFSIYIGKDSKYSALIFGGVDKNFFEGDIYMFPVVKEYYWEIHFDGLYIDHQKFCCGVNSIVYDLKKKDQENNKLFFTRKYFRKNKFKTHLRKYLLKKIKHQKKQKHSNHKKKKLNKKKNYLIFDSGTSFNSVPKDEIEYFFRVVPSKKCDDSNIDQVVSSYPNLTYVINKMPFTLTPSQYLVRKNDMCKPAFMEIEVSSEYGHAYILGNATFMRYYYTVYRRGNNNNSSYVGIAKAVHTEENEKYLSSLHNKINNL
|
During the asexual blood stage, initiates the proteolytic maturation of several rhoptry proteins and thus, is required for merozoite invasion of host erythrocytes and probably the subsequent development of the ring-stage. Cleaves rhoptry associated protein 1 RAP1 and apical sushi protein ASP during schizont maturation. Also cleaves rhoptry protein RON3 (By similarity).
|
A0A2I4E5L6
|
VCL6_JUGRE
|
Vicilin Jug r 6.0101 (Allergen Jug r 6) (Vicilin Jug r 6) (allergen Jug r 6.0101)
|
MAFKPKIPIALLLLTSLLAICAGLALAMQDPELKQCKHQCRHQRQFDEQEKEHCQRSCDEYHIEKKARERAERRRSEEGSSREEGYEEEELGGEREEENPYVFEDEDFETRVRTDEGRIQVLEKFTKRSKLLRGIENFRVAILEANPQTFISPAHFDAELVVFVAKGRATITTVREEKRENFNVEQGDIMRIPAGTPVYLINRDENEKLYIVKILRPVSVPGHFEAFHGSGGEDPESFYRAFSWEVLEAALKTRRDQLEKLFGKQTQGVIIKASKEQIRSMSKHEETTPRIWPFGGDSTHPFNLFHKRPSQSNQFGRLFETDPKECKQLQDLDLMVSFANITKGSMAGPYYNSRATKISVVIEGEGYFEMACPHLSSSGSRGQREGSGSSRRRSRSGPSYQQIRGRLRPGMVFVAPAGHPVAVIASRNKNLQVLCFDVNAQGNIRFPLAGKNNIVNEFEKEAKELAFNFPAREVEKIFRNQDQEFFFPGPSRQPEEGGRAFE
|
Seed storage protein.
|
A0A2I7G3B0
|
ALDH1_TANCI
|
Aldehyde dehydrogenase 1 (TcALDH1) (EC 1.2.1.5) (Trans-chrysanthemic acid synthase) (EC 1.2.1.-)
|
MSSGANGNSKSLAYDIKFTKLFINGEFVDSISGSTFETIDPATEEVLATVAEGREEDVDLAVKAAREAFDNGPWPRLSGEARRKILLKFADLIEENADEIATLEVIDTGKPFQIARYVENSWTSETFRYFAGAADKIRGATLKMSSDFQAYTLREPIGVVGHIIPWNAPAYLFAMKVAPALAAGCTVVIKPAENTPLVGLFMAYLSKLAGVPDGVINVVNGFGSTAGAAVSSHMDIDAVTFTGSTKVGRTIMQAAAASNLKPVSLELGGKSPFIVFDDADIEKAAEIAVLGVLSNKGELCVAGSRVFVHEGIYDAFVKKLEATVKNWATGDRFDAATRHGPQNNKQQYEKVLSYIELGKKEGATLVTGGKPFGNKGYYIEPTLFTNVTDEMTIAKEEIFGPVIMVLKFKTIEEVIRRANATTYGLAAGIMTKNIDIANTVTRSIRAGSVWVNCYLALDRDTPFGGYKMSGFGREQGLEALEHYLQVKTVTTPIYNSPWL
|
Component of the monoterpenoid pyrethrins biosynthesis pyrethrins are widely used plant-derived pesticide. Mediates the conversion of trans-chrysanthemal into trans-chrysanthemic acid. Can also use octanal, hept-2-enal, dodecanal, citral, farnesal, citronellal and perillyl aldehyde as substrates.
|
A0A2J6L8Y7
|
IF4E1_LACSA
|
Eukaryotic translation initiation factor 4E-1 (Ls-eIF4E-1) (eIF-4E-1) (eIF-4F 25 kDa subunit) (eIF-4F p26 subunit) (mRNA cap-binding protein)
|
MVEEIMKSEEQKLIDVNKHRGVRSDGEEDEQLEEGEIVGGDADTLSSSSSSRPGTAIAQHPLEHSWTFWFDTPSAKSKQVAWGSSMRPIYTFSSVEEFWSLYNNIHRPSKLAQGADFYCFKNKIEPKWEDPVCANGGKWTMTFTKAKSDTCWLYTLLAMIGEQFDHGDDICGAVVNVRARQEKIALWTKNAANESAQLSIGKQWKEFIDYNDTIGFIFHEDAKTLDRSAKNKYTV
|
Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (By similarity). Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structures (By similarity). Key component of recessive resistance to potyviruses.
|
A0A2J8C362
|
CUTI1_VERDA
|
Cutinase 11 (EC 3.1.1.74) (VdCUT11)
|
MQTSALLLAAQALVASAGLIERQSCPSIHVFGARETTVGPGYGSAGTVVNLILNAYPGSTAEAIVYPACGGQSSCGGISYGNSAMQGTNAVASAVNSFNQRCPNTQIVLVGYSQGGQIMDNALCGGGDPGSGITNTAVPLTASAVTAVKAAILMGSPRYRAGFPYNVGTCTAQGFAARPAGFVCPSGSKIQNYCDSPDPYCCTGNNQAVHQGYGGVYGQAALTFVRSKLNSGGSPPTTPPTTPPTTPPTTPPTTPPPSGSCAALYGQCGGQGWNGATCCSQGTCRASNQWYSQCL
|
Catalyzes the hydrolysis of complex carboxylic polyesters found in the cell wall of plants. May degrade cutin, a macromolecule that forms the structure of the plant cuticle. May also degrade suberin, a specialized macromolecule found in the cell wall of various plant tissues. Allows pathogenic fungi to penetrate through the cuticular barrier into the host plant during the initial stage of fungal infection (By similarity). Involved in pathogenesis.
|
A0A2K1ZPK4
|
NRP32_POPTR
|
Metal transporter Nramp3.2 (PotriNRAMP3.2) (PtNRAMP3.2) (Natural resistance-associated macrophage protein 3.2)
|
MPVEENYQPLLQEEEERAYDSDEKVLIIGVDSDTESGGSTVLPPFSWKKLWLFTGPGFLMSIAFLDPGNLEGDLQAGAIAGYSLLWLLLWATAMGLLVQLLSARLGVATGRHLAELCREEYPTWASMVLWIMAELALIGADIQEVIGSAIAIKILSNGFVPLWAGVTITACDCFIFLFLENYGVRKLEAVFAVLIGIMAVTFGWMFADAKPSASELFLGILIPKLSSRTIQQAVGVVGCIIMPHNVFLHSALVQSREIDHNKKDRVQEALRYYSIESTTALVISFVINLFVTTVFAKGFYGTELANSIGLVNAGQYLQDKYGGGFFPILYIWGIGLLAAGQSSTITGTYAGQFIMGGFLNLRLKKWLRALITRSCAIIPTMIVALVFDTSEDSLDVLNEWLNVLQSIQIPFALIPLLCLVSKEQIMGTFKIGPILKMVAWLVAALVMVINGYLLLDFFFNEVTGVAFTTVVCGFTGAYVAFIIYLISRGFTCFSRCCPSKQIEVE
|
Divalent metal transporter. Can transport manganese (Mn) and iron (Fe). Involved in the release of metals stored in the vacuole.
|
A0A2K3D5Z7
|
CMD1_CHLRE
|
5-methylcytosine-modifying enzyme 1 (5mC-modifying enzyme 1) (EC 1.14.99.-) (Ten-eleven translocation 1 gene protein homolog) (CrTET1)
|
MSVALASEYQLVQNAQLPQRWSQSARKSLAILEATARKEATAQMEAAGGSFCGQFPVDPAFKVLSLEYSAPNPDIARAIRRVDSVPNPPLPSHVVAIQSTAVDADLSLAMGVSLTPGRHTSYLVDARALQQSNSAAVAARKADGDKWGPACDEMFRGCRCVTGQEVVFYTAVKEPAGEVEGGEGSLFKPSFDGPAFRPSWGELSGKATGVVACVLQVPIGKETDIICAEYDNLVSKGQFATVDRFGGDHTVNMTGNALIQNDGKAISKGYAVAHRARVTSNVYGKANDVSLQRLAETVWSVVEKRLSFMPAYRDLVITEQGKPFMLGATATNIISLTENQGVMLHLDTDDGVWTIILWFHRHSGIIAGGEFVLPSLGISFQPLDFTIVVFAANTIVHGTRPLQTTGKIIRWGSSHFLRFKDVNALAQLGAAYGVDELDAKQRDQLEEVDAANSKDGVGAARRVASCMAAERKAAIEAQKAACVRGVVMNPCTGRMPSLLFWQVWRKPPALAVRANAVAGKKRAAADVDFCGA
|
Dioxygenase that catalyzes DNA modification by mediating the conversion of the modified genomic base 5-methylcytosine (5mC) into 5-glyceryl-methylcytosine (5gmC). Catalyzes the conjugation of a glyceryl moiety from L-ascorbate (vitamin C) to the methyl group of 5mC through a carbon-carbon bond. 5gmC DNA modification may be required during photosynthesis as an epigenetic mark that couteracts DNA methylation.
|
A0A2K3DU55
|
PGPP1_CHLRE
|
Phosphatidylglycerophosphate phosphatase 1, chloroplastic (CrPGPP1) (PGP phosphatase 1) (EC 3.1.3.27)
|
MRSVPGPSPPCTRSLAHSCRAAARGPCGSARPRARSVSARAHSSEASDMARVQQNFNSAGVGLFFSLFGGNQSLALPHLAAPDIRHVDWRALKAAGFKGLVFDKDNTLSLPFALEVEPRLQPALAGCLEAFGGRAVLYSNSAGLQQYDPEGKEAAALEAALGIPVLRHADKKPGGGCAELEAHFGCPAPQLIMVGDRYLTDIAFGNRHGMLTVHVQPLTTSGEPFGVVMARRIEEFWVARWTSFGVHPPAHSLAPHDTLAAYVKDQPIA
|
Phosphatidylglycerophosphate phosphatase involved in the biosynthesis of phosphatidylglycerol (PG), a phosphoglycerolipid predominantly present in chloroplastic thylakoid membranes and which has important photosynthetic function. Required for thylakoid membranes development and chloroplast function (By similarity).
|
A0A2K3DZC4
|
BSD2_CHLRE
|
Protein BUNDLE SHEATH DEFECTIVE 2, chloroplastic (CrBSD2)
|
MNSAALNARTASVAPQPQACHACKCRQLLSRRVPPAQRQVECSAIAPETLQDIIVGGAVVGAVSVALYAGLKKDPVPCSLCQGTGGIRCFACGGDGRNATVSRDDLYDSKALGGGVAPPKRDPLGRTINPRDCKVCRGAGLVLCSQCKGTGFQSAF
|
Chloroplast chaperone required for RuBisCo biogenesis and translational regulation of the RuBisCo large subunit (RbcL). Stabilizes an end-state assembly intermediate of eight RbcL subunits until the small subunits (RBCSs) become available to produce a complete stable RuBisCo complex containing eight small and eight large subunits (By similarity).
|
A0A2K5EJU6
|
APOA1_AOTNA
|
Apolipoprotein A-I (Apo-AI) (ApoA-I) (Apolipoprotein A1) [Cleaved into: Proapolipoprotein A-I (ProapoA-I); Truncated apolipoprotein A-I]
|
MKAAVLIWLFLMGSQARHFWQQDEPPQSPWDRVKDLATVYVDSVKDSGRDYVSQFETSTLGKQLNLKLLDNWDSLTSTVNKLREQLGPVTQEFWDNLEKETEELRQEMSKDLEEVKAQVQPYLDNFQKNWQEEMNLYSQKLEPLRTELQEGALQKLQDLQEKLSPLAEQVRDRARAHVNTLRTQLAPYSDELRQRLATRLEALKENSGASLAEYHAKASEHLSALGEKAKPALDDLRQGLLPVLESFKVSFLSALEEYTKKLSSQ
|
Participates in the reverse transport of cholesterol from tissues to the liver for excretion by promoting cholesterol efflux from tissues and by acting as a cofactor for the lecithin cholesterol acyltransferase (LCAT). As part of the SPAP complex, activates spermatozoa motility.
|
A0A2K5QCI5
|
APOA1_CEBIM
|
Apolipoprotein A-I (Apo-AI) (ApoA-I) (Apolipoprotein A1) [Cleaved into: Proapolipoprotein A-I (ProapoA-I); Truncated apolipoprotein A-I]
|
MKAAVLTLAVLFLTGSQARHFWQQDEPPQSPWDRVKDLATVYVDSVKDSGRDYVSQFESSALGKQLNLKLLDNWDSLTSTVNKLREDLGPVTQEFWDNLEKETGWLRQEMSKDLEEVKAKVQPYLDDFQKKWQEEVKLYSQKLEPLRTEFQEGALQKLQDLQEKLSPLAEQVRDRARAHVDTLRTQLAPYSDELRQRLATRLEVLKESGGASLAEYHAKASEHLSALGEKAKPALEDLRQGLLPVLESFKVSFLSALEEYAKKLSSQ
|
Participates in the reverse transport of cholesterol from tissues to the liver for excretion by promoting cholesterol efflux from tissues and by acting as a cofactor for the lecithin cholesterol acyltransferase (LCAT). As part of the SPAP complex, activates spermatozoa motility.
|
A0A2K5TU92
|
SIR6_MACFA
|
NAD-dependent protein deacylase sirtuin-6 (EC 2.3.1.-) (NAD-dependent protein deacetylase sirtuin-6) (EC 2.3.1.286) (Protein mono-ADP-ribosyltransferase sirtuin-6) (EC 2.4.2.-)
|
MSVNYAAGLSPYADKGKCGLPEIFDPPEELERKVWELARLVWQSSHVVFHTGAGISTASGIPDFRGPHGVWTMEERGLAPKFDTTFESARPTQTHMALVQLERVGLLRFLVSQNVDGLHVRSGFPRDKLAELHGNMFVEECAKCKTQYVRDTVVGTMGLKATGRLCTVAKARGLRACRGELRDTILDWEDSLPDRDLALADEASRNADLSITLGTSLQIRPSGNLPLATKRRGGRLVIVNLQPTKHDRHADLRIHGYVDEVMTRLMKHLGLEIPAWDGPHVLERALPPLPRPPTPKLEPKEESPTRINGSIPAGSCLEPCAQHNGSEPASPKRERPTSPAPNRPPKRVKAEAVPS
|
NAD-dependent protein deacetylase, deacylase and mono-ADP-ribosyltransferase that plays an essential role in DNA damage repair, telomere maintenance, metabolic homeostasis, inflammation, tumorigenesis and aging. Displays protein-lysine deacetylase or defatty-acylase (demyristoylase and depalmitoylase) activity, depending on the context (By similarity). Acts as a key histone deacetylase by catalyzing deacetylation of histone H3 at 'Lys-9', 'Lys-18' and 'Lys-56' (H3K9ac, H3K18ac and H3K56ac, respectively), suppressing target gene expression of several transcription factors, including NF-kappa-B. Acts as an inhibitor of transcription elongation by mediating deacetylation of H3K9ac and H3K56ac, preventing release of NELFE from chromatin and causing transcriptional pausing (By similarity). Involved in DNA repair by promoting double-strand break (DSB) repair: acts as a DSB sensor by recognizing and binding DSB sites, leading to (1) recruitment of DNA repair proteins, such as SMARCA5/SNF2H, and (2) deacetylation of histone H3K9ac and H3K56ac (By similarity). SIRT6 participation to DSB repair is probably involved in extension of life span (By similarity). Also promotes DNA repair by deacetylating non-histone proteins, such as DDB2 and p53/TP53 (By similarity). Specifically deacetylates H3K18ac at pericentric heterochromatin, thereby maintaining pericentric heterochromatin silencing at centromeres and protecting against genomic instability and cellular senescence (By similarity). Involved in telomere maintenance by catalyzing deacetylation of histone H3 in telomeric chromatin, regulating telomere position effect and telomere movement in response to DNA damage (By similarity). Required for embryonic stem cell differentiation by mediating histone deacetylation of H3K9ac (By similarity). Plays a major role in metabolism by regulating processes such as glycolysis, gluconeogenesis, insulin secretion and lipid metabolism (By similarity). Inhibits glycolysis via histone deacetylase activity and by acting as a corepressor of the transcription factor HIF1A, thereby controlling the expression of multiple glycolytic genes (By similarity). Has tumor suppressor activity by repressing glycolysis, thereby inhibiting the Warburg effect (By similarity). Also regulates glycolysis and tumorigenesis by mediating deacetylation and nuclear export of non-histone proteins, such as isoform M2 of PKM (PKM2) (By similarity). Acts as a negative regulator of gluconeogenesis by mediating deacetylation of non-histone proteins, such as FOXO1 and KAT2A/GCN5 (By similarity). Promotes beta-oxidation of fatty acids during fasting by catalyzing deacetylation of NCOA2, inducing coactivation of PPARA (By similarity). Acts as a regulator of lipid catabolism in brown adipocytes, both by catalyzing deacetylation of histones and non-histone proteins, such as FOXO1 (By similarity). Also acts as a regulator of circadian rhythms, both by regulating expression of clock-controlled genes involved in lipid and carbohydrate metabolism, and by catalyzing deacetylation of PER2 (By similarity). The defatty-acylase activity is specifically involved in regulation of protein secretion (By similarity). Has high activity toward long-chain fatty acyl groups and mediates protein-lysine demyristoylation and depalmitoylation of target proteins, such as RRAS2 and TNF, thereby regulating their secretion (By similarity). Also acts as a mono-ADP-ribosyltransferase by mediating mono-ADP-ribosylation of PARP1, TRIM28/KAP1 or SMARCC2/BAF170 (By similarity). Mono-ADP-ribosyltransferase activity is involved in DNA repair, cellular senescence, repression of LINE-1 retrotransposon elements and regulation of transcription (By similarity).
|
A0A2K6TRM6
|
APOA1_SAIBB
|
Apolipoprotein A-I (Apo-AI) (ApoA-I) (Apolipoprotein A1) [Cleaved into: Proapolipoprotein A-I (ProapoA-I); Truncated apolipoprotein A-I]
|
MKAVVLTLAVLFLTGSQARHFWQQDEPPQSPWDRVKDLATVYVDSVKESGKDYVSQFETSALGKQLNLKLLDNWDSLTSTVNKLREQLGPVTQEFWDNLEKETEQLRQEMNKDLEEVKAKVQPYLDDFQKKWQEEMNLYSQKLEPLRTEFQEGAFQKLQDLREKLRPVAEQVRDRARAHVDTLRTQLAPYSDELRQRLATRLEALKESGATLAEYQAKASEHLSALGEKAKPAFEDLRQGLLPVLESFKVSFLSALDEYAKKLSSQ
|
Participates in the reverse transport of cholesterol from tissues to the liver for excretion by promoting cholesterol efflux from tissues and by acting as a cofactor for the lecithin cholesterol acyltransferase (LCAT). As part of the SPAP complex, activates spermatozoa motility.
|
A0A2K8FQU5
|
TAT_CATRO
|
Tabersonine-19-hydroxy-O-acetyltransferase (EC 2.3.1.-)
|
MASKMVEIVSKMFIKPSSPTPQSLRRYNLSSIDQTIDSEVTSLAFFYTYNPSHESSKIGDLLKNSLSKTLVSYYQFAGRLIENDYIDCNDEGVEFVEVRIHGRMNDILKRGKSFATDLVLPTRIIALHEDSLLIVQLSHFDCGGIAIGFGASHKVSDGVSNVMFMKDWASSTSLSTFHKPTPLLTADSIFPPEDNKLLSNKSIVSFQQCLGKRFVFSTEAIEKLKSKAIEYGIQKPSRVEVVTAFLCQCAANCDLPRKKPYAIISAVNLRPYLALPQNSIGNIFSFYFCINDEGMDNQFSALISKLRNGKQKLLENIISKEKLTYESQMQELTKCLDQLNISSLDTYFCSSWCRFPVYDIDFGWGKPILVSPFQPHVKDLILLMDSPEGDGIEALITMEEKKMAAFEKNEELRSFAYLDSPEPEALIIPEEDKSFE
|
Component of the monoterpenoid indole alkaloids (MIAs, e.g. echitovenine, tabersonine, lochnericine, 19-hydroxytabersonine and horhammericine) biosynthetic pathway MIAs are used in cancer treatment and other medical applications. Acyltransferase catalyzing the conversion of horhammericine to 19-O-acetylhorhammericine, of 19-hydroxytabersonine to 19-O-acetyltabersonine and of minovincinine to echitovenine.
|
A0A2K9RFZ2
|
TPS2_VITAC
|
Class I diterpene synthase 2, chloroplastic (VacTPS2) ((13S)-vitexifolin A synthase) (EC 4.2.3.-) (9,13-epoxylabda-14-ene synthase) (EC 4.2.3.189) (Viteagnusin D synthase) (EC 4.2.3.-)
|
MSLRFNLIVTPFSNHRIRNRRETFPAQEFPVATSKSAVKVKCNLITSTDLVGKVREKINGKVDNSLEVPAIHPVDIPSNLCMIDTLERLGVDRYFQSEIDGVLEETYRLWQQKEKDIFADVTCRAMAFRLLRVKGYEVSSDELAPYADQAHVNLQISDVTAVIELYRASQERIYEEESTLEKLHAWTSTYLKQQLVSGTISDKKLHKQVEYYLKNYHGILDLVGIRRSLDLYDIDHYQILKAADRFRTICKDLLAFSRQDFNNCQAQYQRELQLLQRWYEDCRLDKLNYGRDVLRISYFVSSAIIGDPELSDARLAFAKYCVLTTCIDDFFDHAGSREESYRILELVKEWKEKPAEDYGSKEVEFLFTAVYNTVNELAEMAYVEQGRCVKSLLIKLWVELLTSFKKELDSWTDDTALSLDEYLSSSWVSITSRINILTSIQFLGLKLSEEMLSSQECTDLCRHGSLVVRLLNDMQTFEKERRENTKNSVSILLEAPKHEGAITEEEVISKIKEIVEQNRRKLMQMVYQRGTIFPRKCKDVFLKSCRGGYYLYSNGDEFTSPVQIMEDMKLCYEPLTFHPLEANNGGNKN
|
Involved in the biosynthesis of labdane-type diterpenoid including cleroda-dienols, and peregrinol lactones and furan derivatives, dopaminergic diterpenoids that can bind to dopamine receptors in the human pituitary gland, have probably ability to lower prolactin levels, and are used to treat menstrual cycle disorders (e.g. premenstrual syndrome and mastodynia) (Probable). Terpene synthase the catalyzes the conversion of peregrinol diphosphate to viteagnusin D and 9,13(R)-epoxy-labd-14-ene, and of syn-copalyl diphosophate to vitexifolin A.
|
A0A2L0ART2
|
TXF1A_SCOMU
|
Mu-scoloptoxin(15)-Ssm1a (Mu-SLPTX(15)-Ssm1a) (Potassium channel toxin SsTx) (Ssm spooky toxin)
|
MEKKIIFLVFLVALLALPGFISTEVIKKDTPYKKRKFPYKSECLKACATSFTGGDESRIQEGKPGFFKCTCYFTTG
|
Blocks voltage-gated potassium channels Kv7.4/KCNQ4 (IC(50)=2.5 uM), Kv7.1/KCNQ1 (IC(50)=2.8 uM), Kv7.2/KCNQ2 (IC(50)=2.7 uM) and Kv7.5/KCNQ5 (IC(50)=2.7 uM). Targets the pore domain, in particular negatively charged residues 'Asp-266' and 'Asp-288', of KCNQ4 and probably other KCNQ channel family members where these residues are conserved. In vivo, shows vasoconstrictive activity resulting in acute hypertension when injected intravenously in mice. Also induces coronary vasospasms ultimately leading to heart failure. Induces seizures when injected into the hippocampus of mice. Decreases respiratory rate while increasing respiratory amplitude, probably by triggering a contraction of the bronchial ring.
|
A0A2L0VXR5
|
PLE4_CLIPA
|
Geranylgeranyl pyrophosphate synthase (GGPP synthase) (GGPPSase) (GGS) (EC 2.5.1.-) ((2E,6E)-farnesyl diphosphate synthase) (Dimethylallyltranstransferase) (EC 2.5.1.1) (Farnesyl diphosphate synthase) (Farnesyltranstransferase) (EC 2.5.1.29) (Geranylgeranyl diphosphate synthase) (Geranyltranstransferase) (EC 2.5.1.10) (Pleuromutilin biosynthetic cluster protein synthesis protein G)
|
MRIPNVFLSYLRQVAVDGTLSSCSGVKSRKPVIAYGFDDSQDSLVDENDEKILEPFGYYRHLLKGKSARTVLMHCFNAFLGLPEDWVIGVTKAIEDLHNASLLIDDIEDESALRRGSPAAHMKYGIALTMNAGNLVYFTVLQDVYDLGMKTGGTQVANAMARIYTEEMIELHRGQGIEIWWRDQRSPPSVDQYIHMLEQKTGGLLRLGVRLLQCHPGVNNRADLSDIALRIGVYYQLRDDYINLMSTSYHDERGFAEDMTEGKYTFPMLHSLKRSPDSGLREILDLKPADIALKKKAIAIMQDTGSLVATRNLLGAVKNDLSGLVAEQRGDDYAMSAGLERFLEKLYIAE
|
Geranylgeranyl pyrophosphate synthase part of the gene cluster that mediates the biosynthesis of pleuromutilin, a tricyclic diterpene showing antibacterial properties. The geranylgeranyl diphosphate (GGPP) synthase catalyzes the first step in pleuromutilin biosynthesis. GGPP is then substrate of the premutilin synthase (PS) to yield premutilin. Premutilin synthase is a bifunctional enzyme composed of the fusion of a class II diterpene cyclase (DTC) and a class I diterpene synthase (DTS), with the corresponding domains and active sites containing characteristic aspartate-rich motifs. GGPP is first converted to mutildienyl-diphosphate (MPP) at the class II DTC site. MPP is subsequently further cyclized at the class I DTS site, followed by a 1,5-hydride shift and addition of water prior to terminating deprotonation, to yield premutilin. In addition to the aforementioned GGPP synthase and bifunctional diterpene synthase, the cluster contains also three cytochrome P450 monooxygenases, a short-chain alcohol dehydrogenase, and an acyltransferase, involved in the conversion of premutilin to pleuromutilin. The cytochrome P450 monooxygenases P450-1 and P450-2 hydroxylate premutilin at C-11 and C-3, respectively, producing 11-hydroxypremutilin and 3-hydroxypremutilin (By similarity). The combination of the actions of both ple5 and ple6 leads to the production of 3,11-dihydroxypremutilin (By similarity). The short chain dehydrogenase SDR further converts 3,11-dihydroxypremutilin into mutilin (By similarity). The acetyltransferase ATF then acetylates mutilin to produce 14-O-acetylmutilin (By similarity). Finally, the cytochrome P450 monooxygenase P450-3 catalyzes hydroxylation on the alpha position of the acetyl side chain of 14-O-acetylmutilin to yield pleuromutilin (By similarity).
|
A0A2L2DDD0
|
FIG02_BOARA
|
Figainin 2 (Br22)
|
MAFLKKSLFLVLFLGIVSLSVCEEEKREGEEKEEKREEEEGKEENEDGNEEHKEKRFLGAILKIGHALAKTVLPMVTNAFKPKQ
|
Antimicrobial peptide that displays antibacterial, antiprotozoal, and antiviral activity. Exhibits antibacterial activity against the Gram-positive bacteria S.epidermidis ATCC 12228 (MIC=4 uM), E.casseliflavus ATCC 700327 (MIC=4 uM), S.aureus ATCC 25923 (MIC=8 uM) and E.faecalis ATCC 29212 (MIC=8 uM), and the Gram-negative bacteria E.coli ATCC 25922 (MIC=8 uM), K.pneumoniae ATCC 13883 (MIC=8 uM), the multi-resistant clinical isolate strain K.pneumoniae carbapanemase (KPC) MR (MIC=16 uM), and P.aeruginosa ATCC 27853 (MIC=32 uM). Displays antiprotozoal activity against the epimastigote form of T.cruzi (IC(50)=6.32 uM). Does not show antimicrobial against the fungi C.albicans ATCC 90028 and C.parapsilosis ATCC 22019. Displays antiviral activity against the human viruses chikungunya (EC(50)=17.9 uM), Dengue serotype 4 (EC(50)=20.8 uM) and Yellow Fever (EC(50)=21.8 uM). Shows moderate cytolytic activity against human erythrocytes (HC(50)=48.9 uM), and activates the oxidative burst in human neutrophils. Also displays anti-proliferative effects against MCF-7 breast cancer cells (IC(50)=15.3 uM) and B16F10 murine melanoma cells (IC(50)=12.8 uM).
|
A0A2L2DDE6
|
FIG01_BOARA
|
Figainin 1 (Br24)
|
MAFLKKSLFLVLFLGLVSLSIGEEEKREEEEKNEEGANQEENAENKEKRFIGTLIPLALGALTKLFKG
|
Antimicrobial peptide that displays antibacterial and antiprotozoal activity. Exhibits antibacterial activity against the Gram-positive bacteria S.epidermidis ATCC 12228 (MIC=2 uM), E.casseliflavus ATCC 700327 (MIC=16 uM), S.aureus ATCC 25923 (MIC=4 uM) and E.faecalis ATCC 29212 (MIC=8 uM), and the Gram-negative bacteria E.coli ATCC 25922 (MIC=16 uM) and K.pneumoniae ATCC 13883 (MIC=4 uM). Displays antiprotozoal activity against the epimastigote form of T.cruzi (IC(50)=15.9 uM). Does not show antimicrobial activity against the Gram-negative bacterium P.aeruginosa ATCC 27853, or the fungi C.albicans ATCC 90028 and C.parapsilosis ATCC 22019. Shows high cytolytic activity against human erythrocytes (HC(50)=10 uM), and displays anti-proliferative effects against various cancer cell lines including MCF-7 breast cancer cells (IC(50)=13.7 uM), HeLa cervical adenocarcinoma cells (IC(50)=11.1 uM) and B16F10 murine melanoma cells (IC(50)=10.5 uM).
|
A0A2N6JFX7
|
TRTA_HERS1
|
Triuret hydrolase TrtA (EC 3.5.1.-) (Cysteine hydrolase)
|
MIRIDATPYPYQFHPRSTALVVIDMQRDFIEEGGFGSALGNDVRPLAAIVPTVAALLQLAREAGMLVVHTRESHLPDLSDCPRSKRLRGNPTLGIGDVGPMGRILVQGEPGNQILPQLAPVEGELVIDKPGKGAFYATDLHAQLQERRITHLLVAGVTTEVCVQTSMREANDRGYECLVIEDACASYFPDFHRITLEMLTAQGGIVGWRTPLAQLQAGVAAYTGENP
|
Involved in the degradation of triuret (carbonyldiurea), an impurity in agricultural urea fertilizer, and an intermediate of uric acid oxidation endogenously found in human urine and in prokaryotic metabolism. Catalyzes the hydrolysis of triuret to 1-carboxybiuret and ammonia. The product, carboxybiuret, channels into biuret metabolism and is spontaneously decarboxylated to biuret. Extremely specific for triuret with four, three and two orders of magnitude less activity with biuret, 1-nitrobiuret and formylurea, respectively. No activity with tetrauret, pentauret or nonplanar compounds methylene diurea or succinamide.
|
A0A2P1GIW2
|
CS_CATRO
|
Catharanthine synthase (EC 4.-.-.-) (Hydrolase 1) (CrHL1)
|
MNSSTDPTSDETIWDLSPYIKIFKDGRVERLHNSPYVPPSLNDPETGVSWKDVPISSQVSARVYIPKISDHEKLPIFVYVHGAGFCLESAFRSFFHTFVKHFVAETKVIGVSIEYRLAPEHLLPAAYEDCWEALQWVASHVGLDNSGLKTAIDKDPWIINYGDFDRLYLAGDSPGANIVHNTLIRAGKEKLKGGVKILGAILYYPYFIIPTSTKLSDDFEYNYTCYWKLAYPNAPGGMNNPMINPIAENAPDLAGYGCSRLLVTLVSMISTTPDETKDINAVYIEALEKSGWKGELEVADFDADYFELFTLETEMGKNMFRRLASFIKHE
|
Component of iboga and aspidosperma monoterpenoid indole alkaloids (MIAs, e.g. tabersonine and catharanthine) biosynthesis pathway from 19E-geissoschizine. Catalyzes the conversion of O-acetylstemmadenine (OAS) to catharanthine.
|
A0A2P1GIW3
|
TS_CATRO
|
Tabersonine synthase (EC 4.-.-.-) (Hydrolase 2) (CrHL2)
|
MGSSDETIFDLPPYIKVFKDGRVERLHSSPYVPPSLNDPETGGVSWKDVPISSVVSARIYLPKINNHDEKLPIIVYFHGAGFCLESAFKSFFHTYVKHFVAEAKAIAVSVEFRLAPENHLPAAYEDCWEALQWVASHVGLDISSLKTCIDKDPWIINYADFDRLYLWGDSTGANIVHNTLIRSGKEKLNGGKVKILGAILYYPYFLIRTSSKQSDYMENEYRSYWKLAYPDAPGGNDNPMINPTAENAPDLAGYGCSRLLISMVADEARDITLLYIDALEKSGWKGELDVADFDKQYFELFEMETEVAKNMLRRLASFIK
|
Component of iboga and aspidosperma monoterpenoid indole alkaloids (MIAs, e.g. tabersonine and catharanthine) biosynthesis pathway from 19E-geissoschizine. Catalyzes the conversion of O-acetylstemmadenine (OAS) to tabersonine, a precursor of vindoline.
|
A0A2R2JFI5
|
OPHMA_OMPOL
|
Methyltransferase/ribosomally synthesized cyclic peptide omphalotin A precursor ophMA (Omphalotin A biosynthesis cluster protein MA) [Cleaved into: N-methyltranferase ophM (EC 2.1.1.-); Ribosomally synthesized omphalotin core peptide; Follower peptide]
|
METSTQTKAGSLTIVGTGIESIGQMTLQALSYIEAAAKVFYCVIDPATEAFILTKNKNCVDLYQYYDNGKSRLNTYTQMSELMVREVRKGLDVVGVFYGHPGVFVNPSHRALAIAKSEGYRARMLPGVSAEDCLFADLCIDPSNPGCLTYEASDFLIRDRPVSIHSHLVLFQVGCVGIADFNFTGFDNNKFGVLVDRLEQEYGAEHPVVHYIAAMMPHQDPVTDKYTVAQLREPEIAKRVGGVSTFYIPPKARKASNLDIIRRLELLPAGQVPDKKARIYPANQWEPDVPEVEPYRPSDQAAIAQLADHAPPEQYQPLATSKAMSDVMTKLALDPKALADYKADHRAFAQSVPDLTPQERAALELGDSWAIRCAMKNMPSSLLDAARESGEEASQNGFPWVIVVGVIGVIGSVMSTE
|
Fusion protein of the methyltransferase ophM and the omphalotin core peptide part of the gene cluster that mediates the biosynthesis of omphalotin A, a highly methylated cyclic dodecapeptide with nematodicidal activity. Omphalotin A derives from the C-terminus of the ophMA protein, and it is the ophMA protein that methylates its own C-terminus using S-adenosyl methionine (SAM). The C-terminus is subsequently cleaved off and macrocyclized by the prolyloligopeptidase ophP to give the final product.
|
A0A2R4QKX7
|
TPS3_PIPNI
|
Terpene synthase 3 (PnTPS3) (Copaene synthase) (PnCop) (EC 4.2.3.133) (Germacrene D synthase) (PnGDS) (EC 4.2.3.-)
|
MGFSFVTNAAIAAHMPPSKQEIIRRDAKFHPTIWGDHFIQYLDTPIDPPQKVVERMEELKKQVRAMLRDTNLDISLIDWIQRTGIAYHFEEQIAETLKHVYEASTLTTDSSKYLEHFDLRHIALRFRLSRQQGYHASTDVFKRFMDEGDKFKQSIANDIEGMLSLYEASFMSVKGEAILDEALAFTGKNLEATLPNLTGSLAQQVECALEIPLRRCTDLVKARRSISCYENKNGRNEVVLELAKLDFNLLQAVHQRELALLTSWWNELGASTNLPFTRNRVVELYFWVLEVLSKPEHARAREIMVKSIIMASILDDVYDVYGTLEELQLFTSALERWDLQALEQLPNTIKTAYSIVLRVFKEYEDLLKPHEVYRVGFARKALIPYMNAYFLEAKWFYSHHHPSFEEYMDNALVSCGYPFLFLVSLVGLDEIATKDVFEWAIKRPNIVVAASMICRNRDDIVGHKEEQERGDVPSGVECYTKDHGCTEEEACMALQAMVDDAWKDINCELLHDTSMPKAILMRAVGLARIISILYQYRDGYSDSTHETKAHVTQVLVQPIPL
|
Sesquiterpene synthase involved in the biosynthesis of volatile compounds that contribute to the characteristic flavors of black pepper. Mediates the conversion of (2E,6E)-farnesyl diphosphate (FPP) into alpha-copaene and germacrene D.
|
A0A2R8Q1W5
|
KEP1B_DANRE
|
Kelch-like ECH-associated protein 1B
|
MTECKAEVTPSASNGHRVFSYTLESHTAAAFAIMNELRRERQLCDVTLRVRYCPLDTHVDFVAHKVVLASSSPVFRAMFTNGLKECGMEVVPIEGIHPKVMGRLIEFAYTASISVGEKCVIHVMNGAVMYQIDSVVQACCDFLVEQLDPSNAIGIASFAEQIGCTELHQKAREYIYMNFSQVATQEEFFTLSHCQLVTLISRDELNVRCESEVFHACVAWVQYDREERRPYVQALLQAVRCHSLTPHFLQRQLEHFEWDAQSKDYLSQIFRDLTLHKPTKVIPLRTPKVPQLIYTVGGYFRQSLSFLEAFNPCSGAWLRLADLQVPRSGLAACVISGLLYAVGGRNNGPDGNMDSHTLDCYNPMNNCWRPCAHMSVPRNRIGVGVIDGMIYAVGGSHGCTHHNSVERYDPERDSWQLVSPMLTRRIGVGVAVINRLLYAVGGFDGTHRLSSAECYNPERDEWRSIAAMNTVRSGAGVCALGNYIYVMGGYDGTNQLNTVERYDVEKDSWSFSASMRHRRSALGVTTHHGRIYVLGGYDGNTFLDSVECFDPETDSWTEVTHMKSGRSGVGVAVTMEPCHKELIPCQC
|
Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that regulates the response to oxidative stress by targeting nfe2l2/nrf2 for ubiquitination. Keap1 acts as a key sensor of oxidative and electrophilic stress: in normal conditions, the BCR(KEAP1) complex mediates ubiquitination and degradation of nfe2l2/nrf2, a transcription factor regulating expression of many cytoprotective genes. In response to oxidative stress, different electrophile metabolites trigger non-enzymatic covalent modifications of highly reactive cysteine residues in KEAP1, leading to inactivate the ubiquitin ligase activity of the BCR(KEAP1) complex, promoting nfe2l2/nrf2 nuclear accumulation and expression of phase II detoxifying enzymes (By similarity).
|
A0A2R8QCI3
|
DAPLE_DANRE
|
Protein Daple (Coiled-coil domain-containing protein 88C)
|
MDITVSELMSNFMDSPLVVWVKTFGPLGFSSEDKLSMFMDLVDGVFLHKIMTHIDPSPMNQRVNKQVNNDVNLRIQNLNTVIRHIKNYYQEHLQQLIVMNLPNVLAIAKDPLSGKSMEEMKRMLLLILGCAVQCDRKEEIIEKIKLLDIETQAAIVTHIQEVTHNQENVLDLQWMEVAEIPAEQLDPLSRTMAFHLRKLIDERDESAELVIELTQERDYLQSQQPSGLLGFPSPERTSLSPITLLSKEDRQHLAVELADTKAKLRRSRQELEEKTEQLIDAKNEIERLDSDIQKLKQENTQLLAEARSVRAYRDEVDSLRERAGKVDRLETELSRFKEKLNDVHFYKTRIEELREDNLTLLETKSMLEEQLTGARGRCDKLHELEKENLQLRSKLHDIEIDRDSDKKRLEELLEENMLLEISQKQSMNESAHLGWELEQLAKNNEVNEARKSFVFELNESASSRLLKLEKENQCLQSTIQELREASINMEEGQLHSLELEKENQSLSKKLERLQSQLDQEKQTTQDMENLGEELIKEKQRMEKTLETIQAEKDRQISELEQEKEHLTQAVSSLRKRAQANSEARVREVETENRILHQTISETGGKLARLEAEKRQVTKELESLRERGERCEELEREVPRLERVREQLQREAAALKIGSERAEALERENATLEQDNRRLKKLADTAQNATLRLAVLEKDHQQLEEENLEQRRALETLRPAAARLAQLQQEHAELEREHEEMCRTMEELRSQAKRSERLEKSCGSLSLENQRLQQTLENSSTKMQGLESELRQNEAEMKDLQRELEGLRQKVTWAETLEKENRGMEQELSQLEKEKKQLEKEARRFRQQLEVKEAALEENCLRLASMEKEGTALSKELGRVKEAAGRLKELERENKDLQKQATMDKKTLATLREELVNEKLRVQQQCNELEKLSHELEKIGLNREKLLQEEHSCEDNKYKILETKIESALKKTLELREEKIQSLESRLEESSSLNQQLRTELTTVKKNLEALKQRHEEEAAHSEISQQTLGQTRSLPDKEKWEMEQREATAELLKLKDRLIDVEKNVRQRHVSIDIHRVIFSIVICFCDSLQNAALQTEKYLLKDQLKQIDSQNAQLNAQTLALQKQAASLQEHNTSLHKETAKLQVENSTLSSQSSSLMAQYGALQAQLQTLESEAESLQKQREEASAARDRVTQDHERLLGVHERQASEYEQLIAQHAALKASQRALEQENRTLENKYMVLLKQKDAMEALEESLQRDRESLGEEIRKNTLILGENRSLREEVDRVSHMHTQLRQEYDSLQLQTKELKTSLNESQLELNRWQARYDQLKEQHQGLDISMTKLDNHCELLTRLKGNLEEENHHLLSQIQMLSQQNQTLLERTMESKELYHEEQKQYIDKLNSLRRQKEKLEEKIMDQYKFYDPTPKKSRQWVGAKAIAKFIKPKKESSRERPDAPRERIRSAPDIPLPEIPTCIDCPESAPPPPPPPLPPRQSRPSLDSMNSQSVEENHVQSPTLSSPALNGRVLNESGGSRSRDGYRSIGGGSESMNGYEELLRWRSREPGGATCSTPLSRNSHNAPGFTSSSSLRPGRRPKGLVSEEDLRHHSPDAGFGSGVHGNTGHRPSSAEFSRNTSSSNSPVSSKGSLDCLQGRSASLSSDDVVGLAHEGSRLSQSSLLPRSSTLPCDSPSASRPSQRPASRRPSSPGSEMVTLEEFLQESNALSPPTVQTGSREDLMTDYFTRSTRPVPLRDGAKTPTNYVTPTVKTTPPELDARTPKPGHSVKPSVRLTDTSTPPSHSQTLPNRGAGLRPSALQQSSPRGSVGGSASLSRTFSLASADLLRSNGPDSYRTEAASPNQNDVVMRRPGAVARERPMSARVTGSSPLPGDPGHISVDPRRLSLAQPRDEFSLVSPPPLHSSSMSLQAEREYVGSGSSRAGAARSGSAQPRGAPHRGEVAMVTPVRAVPALRLNDLEEEPQEQREAESPLLKKADTTNLSYASKEQPTSKPASPDPNNDPQTVWYEYGCV
|
Positive regulator of Wnt signaling, acting synergistically with dvl2 (By similarity). Functions upstream of ctnnb1/beta-catenin in the canonical Wnt pathway, and also activates jnk in the Wnt/planar cell polarity (PCP) pathway (By similarity). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein G(i) alpha (Gi-alpha) subunits. This promotes apical cell constriction and subsequent bending of the neural plate during neurulation via arhgef18 (By similarity).
|
A0A2R8VHR8
|
DT3UO_MOUSE
|
DDIT3 upstream open reading frame protein (Alternative DDIT3 proteins) (AltDDIT3)
|
MLKMSGWQRQSQNNSRNLRRECSRRKCIFIHHHT
|
[Isoform AltDDIT3]: Product of the upstream open reading frame (uORF) of DDIT3/CHOP that is specifically produced in absence of stress, thereby preventing translation of downstream stress effector DDIT3/CHOP.
|
A0A2R9YJI3
|
GPR22_DANRE
|
G-protein coupled receptor 22
|
MESMPSSLTHQRFGLLNKHLTRTGNTREGRMHTPPVLGFQAIMSNVTVLDNIEPLDFEMDLKTPYPVSFQVSLTGFLMLEIVLGLSSNLTVLALYCMKSNLVSSVSNIVTMNLHVLDVLVCVGCIPLTIVVVLLPLEGNNALICCFHEACVSFASVATAANVLAITLDRYDISVRPANRVLTMGRAVALLGSIWALSFFSFLVPFIEEGFFSQAGNERNQTEAEEPSNEYYTELGLYYHLLAQIPIFFFTAVVMLVTYYKILQALNIRIGTRFHSVPKKKPRKKKTISMTSTQPESTDASQSSAGRNAPLGMRTSVSVIIALRRAVKRHRERRERQKRVFRMSLLIISTFLLCWTPITVLNTVILSVGPSNFTVRLRLGFLVMAYGTTIFHPLLYAFTRQKFQKVLKSKMKKRVVSVVEADPMPNNVVIHNSWIDPKRNKKVTFEETEVRQKCLSSEDVE
|
Orphan G-protein coupled receptor that regulates cilia length and structure in the Kupffer's vesicle leading to the left-right asymmetry development by establishing a directional fluid flow.
|
A0A2S1XB67
|
ASO_CATRO
|
O-acetylstemmadenine oxidase (CrASO) (EC 1.21.3.-) (Precondylocarpine acetate synthase)
|
MIKKVPIVLSIFCFLLLLSSSHGSIPEAFLNCISNKFSLDVSILNILHVPSNSSYDSVLKSTIQNPRFLKSPKPLAIITPVLHSHVQSAVICTKQAGLQIRIRSGGADYEGLSYRSEVPFILLDLQNLRSISVDIEDNSAWVESGATIGEFYHEIAQNSPVHAFPAGVSSSVGIGGHLSSGGFGTLLRKYGLAADNIIDAKIVDARGRILDRESMGEDLFWAIRGGGGASFGVIVSWKVKLVKVPPMVTVFILSKTYEEGGLDLLHKWQYIEHKLPEDLFLAVSIMDDSSSGNKTLMAGFMSLFLGKTEDLLKVMAENFPQLGLKKEDCLEMNWIDAAMYFSGHPIGESRSVLKNRESHLPKTCVSIKSDFIQEPQSMDALEKLWKFCREEENSPIILMLPLGGMMSKISESEIPFPYRKDVIYSMIYEIVWNCEDDESSEEYIDGLGRLEELMTPYVKQPRGSWFSTRNLYTGKNKGPGTTYSKAKEWGFRYFNNNFKKLALIKGQVDPENFFYYEQSIPPLHLQVEL
|
Component of the seco-iridoid and derivatives monoterpenoid indole alkaloids (MIAs, e.g. vinblastine, catharanthine, tabersonine, vincadifformine, vindoline, vincristine, quinine and strychnine) biosynthesis pathway. Converts O-acetylstemmadenine (OAS) to reactive acetylated intermediates, likely dihydroprecondylocarpine acetate.
|
A0A2S3R7M0
|
MARTX_VIBVL
|
Multifunctional-autoprocessing repeats-in-toxin (MARTX) (EC 3.4.22.-) [Cleaved into: Actin cross-linking toxin F1 (EC 6.3.2.-); N-epsilon-fatty acyltransferase F2 (EC 2.3.1.-) (Rho inactivation domain-containing toxin F2) (RIDvc); ABH effector region toxin F5; Cysteine protease domain-containing toxin F3 (EC 3.4.22.-)]
|
MGKPFWRSVEYFFTGNYSADDGNNSIVAIGFGGEIHAYGGDDHVTVGSIGATVYTGSGNDTVVGGSAYLRVEDTTGHLSVKGAAGYADINKSGDGNVSFAGAAGGVSIDHLGNNGDVSYGGAAAYNGITRKGLSGNVTFKGAGGYNALWHETNQGNLSFAGAGAGNKLDRTWFNRYQGSRGDVTFDGAGAANSISSRVETGNITFRGAGADNHLVRKGKVGDITLQGAGASNRIERTRQAEDVYAQTRGNIRFEGVGGYNSLYSDVAHGDIHFSGGGAYNTITRKGSGSSFDAQGMEYAKAEDIVLTAAQMHGLSIDNGNKFHAVTAVKSEREPNTYLFAIADGTYTKINKVRLYNDPETGKLKYYSEAWFKRGNHLAELARSDVSSAGGFEVNPINGGYTLANIAVEHQQSVTVHAVEKNLTEYEWVTYANGTLIDAKDVALSEAKMGGHAISTDGTTVDVQAVKSNRKPNTYVYAKVLGPYTKIVVVELANDPKTGALKYQARSWYKEGDHTANLANEDISSANGYHSMGKGGYSLSDLHYSVNAVRSTSETVADIDEYTDQTLFKPATDSGESSGDVRFNGAGGGNVIKSNVTRGNVYFNGGGIANVILHSSQFGNTEFNGGGAANVIVKSGEEGDLTFRGAGLANVLVHQSKQGKMDVYAGGAVNVLVRIGDGQYLAHLLAYGNISVHKGNGNSRVVMLGGYNTHTQIGSGNGLWLAAGGFNVMTQVGKGDVASVLAGGANVLTKVGDGDLTAGMLGGANVITHISGDNETSNTTAVALGGANILTKKGKGNTLAVMGGGANVLTHVGDGTTTGVMVGGANILTKVGNGDTTGIMLGVGNVLTHVGDGQTLGVMGAAGNIFTKVGDGTSIAVMIGAGNIFTHVGEGNAWALMGGLGNVFTKVGNGDALALMVAEANVFTHIGDGMSVALMLAKGNVATKVGNGTTLAAMVGNANIFTHVGSGSTFAAMIGQANIMTKVGNDLTAALMVGKANIYTHVGDGTSLGIFAGEVNVMTKIGNGTTLAAMFGKANIMTHVGDGLTGVLALGEANIVTKVGDDFMGVVAAAKANVVTHVGDATTAAVLAGKGNILTKVGEGTTVGLLISDIGNVMTHVGDGTTIGIAKGKANIITKVGDGLGVNVAWGQANVFTQVGDGDRYNFAKGEANIITKVGDGKEVSVVQGKANIITHVGNGDDYTGAWGKANVITKVGNGRNVVLAKGEANIVTQVGDGDSFNALWSKGNIVTKVGDGMQVTAAKGKANITTTVGDGLSVTAAYGDANINTKVGDGVSVNVAWGKYNINTKVGDGLNVAVMKGKANANIHVGDGLNINASYAQNNVAIKVGNGDFYSLAVASSNTSSNKLSALFDNIKQTLLGVGGSQAINYLVQGDEASSSGTQKGRGAIATPEITKLDGFQMEAIEEVGSDLGDSLTGSVTKVDTPDLNKMQNALDVDGSSDQTQAPNLIVNGDFEQGDRGWKSTHGVEASYSGNVYGVNGEGHGARVTELDTYTNTSLYQDLTDLTEGEVIAVSFDFAKRAGLSNNEGIEVLWNGEVVFSSSGDASAWQQKTLKLTAHAGSNRIEFKGTGHNDGLGYILDNVVAKSESSQQANAVSEHATQNQASQNALSDKERAEADRQRLEQEKQKQLDAVAGSQSQLESTDQQALGNNGQAQRDAVKEESEAVTAELTKLAQGLDVLDGQATHTGESGDQWRNDFAGGLLDGVQSQLDDAKQLANDKIAAAKQTQSDNNSKVKESVAKSEAGVAQGEQNRAGAEQDIAEAKADAETRKADAVAKSNDAKQAESDAHSAANDAQSRGDRDAMNAENKANQAQNDAKGTKQNEGDRPDREGVAGSGLSGNAHSVEGAGETGSHITTDSQTNADGRFSEGLSEQEQEALEGATNAVNRLQINAGIRGKNSGSTITSMFTETNSDSIVVPTTASQDVVRKEIRISGVNLEGLGEASHDSAESLVAARAEKVANLYRWLDTDNDVATDKYVPVPGFERVDVDVSDEVKQRMIQSMSGYIEHTDNQVPKDQAEALATLFVESTLDYDWDKRVEFLTKLESYGYSFEAPHAEKSIVSFWSGKNFKQYRDILDNAQTDGKKVVYDIDVKGNAFAIDLNKHLMRWGGLFLDPDNAEQNQLKSSIDAATFSNTGFWSSVYATGAQNDVYVIAEGGVRLGNYFWNVELPALRQLQREGLVGEIRLLDKPVSEYKDLPADQIGRRLTDAGVAVKVRFDALSHERQAELLADNPDGYKADTLVELDVKLSAIDSMLRESLPFYSLRTERNLLVQEGEEGFEVRSWPGIDGKSKTILLDNPEDAAQQKSIERFILANFDNFEQMPDELFLVDNKVLSHHDGRTRIIAQKEDGAWTYNTNVELMSVTELLDAAHVNGKVRGDSYQQVIDALTEYHASTVEHADYELESVEKLLNLRKQIEGYVLGHPDSGRVEAMNSLLNQVNSRLEEVSVLAVSEQSIKAHDSFSRLYDQLDNANLKESKHLYLDGNGDFVTKGKGNLATIDQLGGSDAVLEKVKAAVTHEYGQVVADTIFARLSANDLAKDGKGIDIAGLNKVHQAIEQHMSPVSATMYIWKPSDHSTLGHAALQIGQGRTQLEGQAAADFNKQNYVSWWPLGSKSSNIRNIFNVATEDQPDLKLRWSDFSQPAHQNDTLEHDMASEENDGFGLKDGETKLKRFIEKLNAAKGIDASYKDASEGYASVLLGNPDMLASTGIPAHVFQPFVDQWNDTSYDMMDVANRFAEELQKQAQASGDPALVEKRIDNVVRLFAERALEEIEAFKASQADEGRVFRINLEGLDVAAMQAEWNRLSNDPDARYQLLTKNCSSTVAKVLKAGGADKLIGHTWRPKFGVWTPTELFNFGQALQEAQLEIAAKKQSHQVTDVLDALSGNEKHKENVTIENDGTPPRDKESLSPLTRFLNNELYGEKDARRKIGEITQTLLDHAVENGESQKVTLKGEAGRLTGYYHQGAASSEGETSATSGKVVLFLHGSGSSAEEQASAIRNHYQKQGIDMLAVNLRGYGESDGGPSEKGLYQDARTMFNYLVNDKGIDPSNIIIHGYSMGGPIAADLARYAAQNGQAVSGLLLDRPMPSMTKAITAHEMANPAGIVGAIAKAVNGQFSVEKNLKGLPKETPILLLTDNEGLGEEGEKLRAKLAIAGYNVTGEQTFYGHEASNRLMGQYADQIVSGLFNAEQAAVEAGEVLKGLEKDFKRYGDALKPDTSVPGKSKDIRTTKDFLNGYKNDHAKEIVDGFRSDMSIKQLVDLFVKGNWSAEQKGALAWEIESRALKVTFQNKSEKYNRLFREIASAGVVDAKATEQLAPQLMLLNLSNDGFGGRCDPLSKLVLVAKQLENDGQVGVARQLLEKMYSAAAVLSNPTLYSDSEKANASKLLSSLAAIHAKNPMHDTSMKVWQEKLEGKQALTVNGVVEKITDASANGKPVLLELDAPGHAMAAWAKDSGDDRVYGFYDPNAGIVEFSSAEKFGDYLTRFFGKSDLDMAQSYKLGKNDAGEAIFNRVVVMDGNTLASYKPTFGDKTTMQGILDLPVFDATPIKKPTGGVASDLEALGDKTKVVVDLAQIFTVQELKERAKVFAKPIGASYQGILDQLDLVHQAKGRDQIAASFELNKKINDYIAEHPTSGRNQALTQLKEQVTSALFIGKMQVAQAGIDAIAQTRPELAARIFMVAIEEANGKHVGLTDMMVRWANEDPYLAPKHGYKGETPSDLGFDAKYHVDLGEHYADFKQWLETSQSNGLLSKATLDESTKTVHLGYSYQELQDLTGAESVQMAFYFLKEAAKKADPISGDSAEMILLKKFADQSYLSQLDSDRMDQIEGIYRSSHETDIDAWDRRYSGTGYDELTNKLASATGVDEQLAVLLDDRKGLLIGEVHGSDVNGLRFVNEQMDALKKQGVTVIGLEHLRSDLAQPLIDRYLATGVMSSELSAMLKTKHLDVTLFENARANGIRIVALDANSSARPNVQGTEHGLMYRAGAANNIAVEVLQNLPDGEKFVAIYGKAHLQSHKGIEGFVPGITHRLDLPALKVSDSNQFTVEQDDVSLRVVYDDVANKPKITFKDSLSGANTALHNQNVNDWERVVVTPTADGGESRFDGQIIVQMENDDVVAKAAANLAGKHPESSVVVQIDSDGNYRVVYGDPSKLDGKLRWQLVGHGRDDSESNNTRLSGYSADELAVKLAKFQQSFNQAENINNKPDHISIVGCSLVSDDKQKGFGHQFINAMDANGLRVDVSVRSSELAVDEAGRKHTKDANGDWVQKAENNKVSLSWDEQGEVVAKDERIRNGIAEGDIDLSRIGVSDVDEPARGAIGDNNDVFDAPEKRKAETETSSSSANNKLSYSGNIQVNVGDGEFTAVNWGTSNVGIKVGTGGFKSLAFGDNNVMVHIGNGESKHSFDIGGYQALEGAQMFIGNRNVSFNLGRSNDLIVMMDKSIPTPPLVNPFDGAARISGVLQSIATSGEGQDWLAAQEQQWTLSGAKKFVKDMSGLDQSSSVDYTSLVELDSQNERSSRGLKHDAEAALNKQYNQWLSGNSDSDTSKLSRADKLRQANEKLAFNFAVGGQGADIQVTTGNWNFMFGDNIQSILDTNLGSLFGLMTQQFSATGQAKTTFTYTPEDLPRQLKNKLLGQLAGVGAETTLADIFGVDYTASGQIVSRNGEAVDGVAILKEMLEVIGEFSGDQLQAFVDPAKLLDSLKSGINMGADGIKSFAETHGLKEKAPEEEEDNSSVSVNGASVNSAQGATVADGSTETAETPDRAFGFNSLNLPNLFATIFSQDKQKEMKSLVENLKENLTADLLNMKEKTFDFLRNSGHLQGDGDINISLGNYNFNWGGDGKDLGAYLGDNNNFWGGRGDDVFYATGTSNIFTGGEGNDMGVLMGRENMMFGGDGNDTAVVAGRINHVFLGAGDDQSFVFGEGGEIDTGSGRDYVVTSGNFNRVDTGDDQDYSVTIGNNNQVELGAGNDFANVFGNYNRINASAGNDVVKLMGYHAVLNGGEGEDHLIAAAISKFSQFNGGEGRDLMVLGGYQNTFKGGTDVDSFVVSGDVIDNLVEDIRSEDNIVFNGIDWQKLWFERSGYDLKLSILRDPASDSDQAKFEHIGSVTFSDYFNGNRAQVIIAMGEKDATGEREYTTLSESAIDALVQAMSGFDPQAGDNGFMDNLDSKSRVAITTAWADVVHKKGITV
|
[Multifunctional-autoprocessing repeats-in-toxin]: Precursor of a multifunctional toxin that causes destruction of the actin cytoskeleton by covalent cross-linking of actin and inactivation of Rho GTPases when translocated into the host cytoplasm. Upon translocation into the host cell, undergoes autoprocessing in cis mediated by the peptidase C80 domain (also named CPD domain): the protease activity is activated upon binding inositol hexakisphosphate (InsP6) present at the host cell membrane and delivers the Cysteine protease domain-containing toxin F3 chain to the host cytosol. The Cysteine protease domain-containing toxin F3 chain will then further cleave and release effector toxin chains that cause disassembly of the actin cytoskeleton and enhance V.vulnificus colonization of the small intestine, possibly by facilitating evasion of phagocytic cells. [Cysteine protease domain-containing toxin F3]: Following autocatalytic cleavage in cis, this chain mediates processing in trans to release other individual toxin chains to the host cytosol. Released effector toxin chains cause disassembly of the actin cytoskeleton and enhance V.vulnificus colonization of the small intestine, possibly by facilitating evasion of phagocytic cells. [Actin cross-linking toxin F1]: Actin-directed toxin that catalyzes the covalent cross-linking of host cytoplasmic monomeric actin. Mediates the cross-link between 'Lys-50' of one monomer and 'Glu-270' of another actin monomer, resulting in formation of highly toxic actin oligomers that cause cell rounding. The toxin can be highly efficient at very low concentrations by acting on formin homology family proteins: toxic actin oligomers bind with high affinity to formins and adversely affect both nucleation and elongation abilities of formins, causing their potent inhibition in both profilin-dependent and independent manners. Acts as an acid--amino-acid ligase that transfers the gamma-phosphoryl group of ATP to the 'Glu-270' actin residue, resulting in the formation of an activated acyl phosphate intermediate. This intermediate is further hydrolyzed and the energy of hydrolysis is utilized for the formation of the amide bond between actin subunits. [N-epsilon-fatty acyltransferase F2]: N-epsilon-fatty acyltransferase that mediates lysine-palmitoylation of host Rho GTPase proteins, with a strong preference for host Rac1. After delivery to the host cytosol, localizes to the host cell membrane where it palmitoylates host Rho GTPase proteins, resulting in loss of all active GTP-bound Rho and subsequent actin depolymerization. Prenylation of host Rac1 at the C-terminus is required for lysine-palmitoylation.
|
A0A2S4N3N0
|
OMPA_SHIFL
|
Outer membrane protein A (Outer membrane porin A)
|
MKKTAIAIAVALAGFATVAQAAPKDNTWYTGAKLGWSQYHDTGFIPNNGPTHENQLGAGAFGGYQVNPYVGFEMGYDWLGRMPYKGDNINGAYKAQGVQLTAKLGYPITDDLDIYTRLGGMVWRADTKANVPGGASFKDHDTGVSPVFAGGVEYAITPEIATRLEYQWTNNIGDANTIGTRPDNGLLSLGVSYRFGQGEAAPVVAPAPAPEVQTKHFTLKSDVLFNFNKATLKPEGQAALDQLYSQLSNLDPKDGSVVVLGYTDRIGSDAYNQGLSERRAQSVVDYLISKGIPADKISARGMGESNPVTGNTCDNVKQRAALIDCLAPDRRVEIEVKGIKDVVTQPQA
|
With TolR probably plays a role in maintaining the position of the peptidoglycan cell wall in the periplasm. Acts as a porin with low permeability that allows slow penetration of small solutes an internal gate slows down solute passage. {ECO:0000255|HAMAP-Rule:MF_00842}. Required for conjugation with F-type plasmids probably serves as the mating receptor on recipient cells. {ECO:0000255|HAMAP-Rule:MF_00842}. (Microbial infection) Serves as a secondary receptor during phage Sf6 infection infection requires both lipopolysaccharide (LPS) and the OmpA beta-barrel.
|
A0A2T4VDM4
|
GSDM_VITXG
|
Gasdermin bGSDM (bGSDM) (Bacterial gasdermin) [Cleaved into: Gasdermin bGSDM, N-terminus]
|
MGLCSDPAITYLKRLGYNVVRLPREGIQPLHLLGQQRGTVEYLGSLEKLITQPPSEPPAITRDQAAAGINGQKTENLSFSIGINILKSVLAQFGAGAGIEAQYNQARKVRFEFSNVLADSVEPLAVGQFLKMAEVDADNPVLKQYVLGNGRLYVITQVIKSNEFTVAAEKSGGGSIQLDVPEIQKVVGGKLKVEASVSSQSTVTYKGEKQLVFGFKCFEIGVKNGEITLFASQPGAIAMALDAAGGVMPSDSALLDEGGLLDLEGF
|
[Gasdermin bGSDM]: Precursor of a pore-forming protein involved in defense against bacteriophages (By similarity). Expression of bGSDM and the neighboring protease gene (Ga0334635_1659) is toxic in E.coli. Cleavage of this precursor by its dedicated protease releases the active moiety (gasdermin bGSDM, N-terminus) which inserts into membranes, forming pores and triggering cell death (By similarity). [Gasdermin bGSDM, N-terminus]: Pore-forming protein that causes membrane permeabilization via a pyroptosis-like activity. Makes ring-like pores when released.
|
A0A2T5Y4G4
|
CAP12_SPHFK
|
CD-NTase-associated protein 12 (Cap12) (NAD(+) hydrolase) (EC 3.2.2.5) (TIR-STING) (SfSTING)
|
MKKRIFIGSSSEQLTILNEIVDLLGDDVECIPWTDAFALNKSGLDSLIKQTRLADYSILIATKDDLTKQRGESLTKPRDNVVFEFGLFLGAAGPEKCYLIAEEDTDLPTDLDGITVAKFTRNSGQYNSLDKIVESIRTHLVKIAEMSQLGLLPSTALAIGYYNSFIKRVCEEIHGSECVELEGKKIKVKSFRVDVVIPETLDDNGVGNFTTLYNKRYGLSKATTCTNPALLGTRGFPFHFKVDPPDANQESPVDIHLLDIPSTLSTIVESLKLYLPSNQVGQDFDMDYLEMRELENFAKVLKYLIGRNAATKGYVNVLTNVKL
|
CBASS (cyclic oligonucleotide-based antiphage signaling system) provides immunity against bacteriophage. The CD-NTase protein synthesizes cyclic nucleotides in response to infection these serve as specific second messenger signals. The signals activate a diverse range of effectors, leading to bacterial cell death and thus abortive phage infection. A type I-D(GG) CBASS system. The effector protein for this CBASS system. Upon activation by c-di-GMP forms filaments which hydrolyze NAD(+) filament formation is required for enzyme activation. Induction in an E.coli strain that synthesizes c-di-GMP leads to significant growth inhibition. Binds c-di-GMP and 3'3'-cGAMP (3'3'-cyclic GMP-AMP), but not c-di-AMP, 2'3'-cGAMP or cUMP-AMP.
|
A0A2U1LIM9
|
NCPR1_ARTAN
|
NADPH--cytochrome P450 reductase 1 (CPR 1) (P450R 1) (EC 1.6.2.4)
|
MQSTTSVKLSPFDLMTALLNGKVSFDTSNTSDTNIPLAVFMENRELLMILTTSVAVLIGCVVVLVWRRSSSAAKKAAESPVIVVPKKVTEDEVDDGRKKVTVFFGTQTGTAEGFAKALVEEAKARYEKAVFKVIDLDDYAAEDDEYEEKLKKESLAFFFLATYGDGEPTDNAARFYKWFTEGEEKGEWLEKLQYAVFGLGNRQYEHFNKIAKVVDEKLVEQGAKRLVPVGMGDDDQCIEDDFTAWKELVWPELDQLLRDEDDTSVATPYTAAVAEYRVVFHDKPETYDQDQLTNGHAVHDAQHPCRSNVAVKKELHSPLSDRSCTHLEFDISNTGLSYETGDHVGVYVENLSEVVDEAEKLIGLPPHTYFSVHTDNEDGTPLGGASLPPPFPPCTLRKALASYADVLSSPKKSALLALAAHATDSTEADRLKFLASPAGKDEYAQWIVASHRSLLEVMEAFPSAKPPLGVFFASVAPRLQPRYYSISSSPKFAPNRIHVTCALVYEQTPSGRVHKGVCSTWMKNAVPMTESQDCSWAPIYVRTSNFRLPSDPKVPVIMIGPGTGLAPFRGFLQERLAQKEAGTELGTAILFFGCRNRKVDFIYEDELNNFVETGALSELVTAFSREGATKEYVQHKMTQKASDIWNLLSEGAYLYVCGDAKGMAKDVHRTLHTIVQEQGSLDSSKAELYVKNLQMAGRYLRDVW
|
This enzyme is required for electron transfer from NADP to cytochrome P450 in microsomes (By similarity). It can also provide electron transfer to heme oxygenase and cytochrome B5 (By similarity). Involved in the biosynthesis of the antimalarial endoperoxide artemisinin. Acts as a redox partner for CYP71AV1 which catalyzes the conversion of amorphadiene to more oxygenated products. {ECO:0000255|HAMAP-Rule:MF_03212, ECO:0000269|PubMed:16612385}.
|
A0A2U8QPE6
|
OXLA_MICMP
|
L-amino acid oxidase (LAO) (MipLAAO1) (EC 1.4.3.2)
|
MNVFFMFSLVFLAAFGSCADDTRPLGECFREADYEEFLEIARNGLKKTSNPKHVVVVGAGMSGLSAAYVLAKAGHKVTLLEASEGVGGRVKTYRNKQEGWYINLGPMRLPERHRIVREYIRKFHLPLSEFVQENENTWYYIKNIRKRVSEVKKNPDLFEYPVNPSEKGKSASQLYQESLEKVIDELKRTNCNHILNKYDTYSTKEYLIKEGNLSPGAVDMIGDLLNEDSSFYLSFIESLKSDDIFSYEKRFDEIVGGFDQLPISMYQAIAEMVHLNAQVIKIQHNAKKVIVTYQTPAKTLPSVTADYVIVCSTSRAARHIRFQPPLPTNKARALRSIHYRSAIKIFLTCTKRFWEADGIHGGKSTTDLPSRFIYYFNQNFTNGIGVIMAYVLADDAKFFQPHDLKTNADIVINDLSLIHQLPKEEIQALCRPSWIQKWSLDKYAMGSITSFTPYQFLDYFEIAAAPVGRIHFAGEYTAKHHGWIDSTIKSGLRAARDVNRA
|
Catalyzes an oxidative deamination of predominantly hydrophobic and aromatic L-amino acids, thus producing hydrogen peroxide that may contribute to the diverse toxic effects of this enzyme. Shows activity on L-Leu, L-Trp, and L-Tyr. Is not active on L-His, L-Ser, L-Arg, L-Ala, L-Glu, L-Cys,L-Lys, L-Val, L-Ile, and L-Thr. Induces apoptosis in Jurkat cells through a hydrogen peroxide-mediated signaling pathway dependent mostly on CASPASE-3 pathway. Remarkably, does no induce toxic effect on peripheral blood lymphocytes. Also exhibits diverse biological activities, such as hemorrhage, hemolysis, edema, and antiparasitic activities, as well as regulation of platelet aggregation (By similarity). Its effect on platelets is controversial, since it either induces aggregation or inhibits agonist-induced aggregation. These different effects are probably due to different experimental conditions (By similarity). Shows antibacterial activity against S.aureus, but not against E.coli.
|
A0A2U9GGW3
|
THS2_PAPSO
|
Thebaine synthase 2 (EC 4.2.99.24)
|
MAPLGVSGLVGKLSTELEVDCDAEKYYNMYKHGEDVKKAVPHLCVDVKIISGDPTSSGCIKEWNVNIDGKTIRSVEETTHDDETKTLRHRVFEGDVMKDFKKFDTIMVVNPKPDGNGCVVTRSIEYEKTNENSPTPFDYLQFGHQAIEDMNKYLRDSESN
|
Catalyzes the formation of thebaine from (7S)-salutaridinol 7-O-acetate at the expense of labile hydroxylated by-products, which are preferentially produced by spontaneous allylic elimination. No visible activity toward (7S)-salutaridinol (at pH 7).
|
A0A2Z5D854
|
C71Z4_PASSA
|
Xanthotoxol synthase (EC 1.14.14.-) (Cytochrome P450 CYP71AZ4) (Fraxetin synthase) (EC 1.14.14.-)
|
MDPAAIFLILAIPIASVYLLFYHKKRVNGLSSPPGPRGLPFIGHFYQIYKSECAHEYISNLSKQYGSLMTLHLGSVPALVVSSPKMAQEVLKTQDLVFCSRAQMTGSGKLSYNGLEMAFAPYGEHWRNVRKMCTLELFTQKRAQFNFRPVREDEVSRMVGRLSEAAAASEDVNAYECFTNFATSIISRVAFGKRYDEDNLGKEKFQRMVADIEAMFAAFFVSDFFPMFGWIDRLSGVKAVLDRNFNEMDTFYQELIDEHLKPDRPESLNGDLIDVMLKNKGSFLTMDSIKAILLNVFSGGIGTTGSALVFAMTALLRNQRVMKKAQEEVRSVIGKKEIVDEDDIQKLPYLRAVVKETLRLYPPGPLLIPRVAMESCVLGEDEDHMYMIKPNTIVYVNTWGIGRDPKYWKNPLEFMPERFFERPDLNYTGQQFEYLPFGSGRRICAGIIIGQNNVEVGLANLLYSFDWEPPTGKTFEDIDDQPCNGLTLAKKNPLYIRPKIYVHP
|
Involved in the biosynthesis of coumarins and furanocoumarins (FCs), natural products required for defense responses against attacks by predators with potential medical and agroindustrial usages such as anticoagulant, rodenticide and artificial vanilla substitutes. Catalyzes the conversion of psoralen into xanthotoxol and of 6-methoxycoumarin into scopoletin. Can also convert with a lower efficiency scopoletin into fraxetin and 7-methoxycoumarin into daphnetin-7-methylether, and use 7-methoxy-3-methylcoumarin as substrate.
|
A0A2Z5XAU0
|
PHM7_PYRSX
|
Diels-Alderase phm7 (EC 5.5.1.-) (Phomasetin biosynthesis cluster protein 7)
|
MSEPTSSSSLDITSNCIIETPLQPSDFLPKSANLFPKFPERISVDSWELWEFDTFDTNGSVAFGCSLYRDARGVEQGGFHAEVNALWPDGTHWGETLYFAVSEVVENSDGTTGGKWLSKDGGSITFHIASDYTAAALDFNVPGKVSGTMELRNHANVSPTSNLPASDAEAQLCPGVYYTFPMGPVATSVTATFSSVGANGESRELFISSGYGGMVRGWSARPWPTFMNDAYYVVAQVGPYMLQILRTLGSVFVQHKPFAVARLYLDGSLVSAANTVVGDELTAHADDVKGDAVRLTKVQPDEKSQGLSGKFRDGNVGYVLEFAKKDSEHGWTFQISHKRAVWSEPTSAPGPDGTGKSGWIEAISGGAKGENYEGHGFGGQLQIPVP
|
Diels-Alderase part of the gene cluster that mediates the biosynthesis of the trans-fused decalin-containing tetramic acid phomasetin, the stereochemical opposite of the HIV-1 integrase inhibitor equisetin. The PKS module of phm1 together with the enoylreductase phm4 catalyze the formation of the polyketide unit which is then conjugated to L-serine by the condensation domain of the phm1 NRPS module. Activity of the Dieckmann cyclase domain (RED) of phm1 results in release of the Dieckmann product intermediate. The Diels-Alderase phm7 then uses the Dieckmann product of phm1 as substrate and catalyzes the Diels-Alder cycloaddition to form the decalin ring of N-desmethylphomasetin. N-desmethylphomasetin is further methylated to phomasetin by the methyltransferase phm5.
|
A0A2Z5Z9X0
|
ACT1_CRIJA
|
Deep-sea actinoporin Cjtox I (DELTA-actitoxin-Cja1a) (DELTA-AITX-Cja1a)
|
MNRLIILCLVAATIYSTIALPMKEDISNEERPTSVNEKPVKKSVAVAGAVIQGAALAFQVLDKILTSLGGIGRKIAIGVDNESGMKWAARNVYFYSGTSDTVLPYSVPHSKAFLYGARKTRGSVRGAVGVLAYSMSDGNTLGILFSVPYDYNWYSNWWNIKVYRGYKRANKWMYHDLYYYARPHKGNNEWHEKSLGYGLKSKGFMTSSGQTKLEIRVSRA
|
Probably acts in predation. Pore-forming protein that forms cations-selective hydrophilic pores of around 1 nm and causes cytolysis. Pore formation is a multi-step process that involves specific recognition of membrane sphingomyelin (but neither cholesterol nor phosphatidylcholine) using aromatic rich region and adjacent phosphocholine (POC) binding site, firm binding to the membrane (mainly driven by hydrophobic interactions) accompanied by the transfer of the N-terminal region to the lipid-water interface and finally pore formation after oligomerization of monomers (By similarity). Shows hemolytic activity on equine erythrocytes. Hemolysis is moderately inhibited in presence of sphingomyelin, suggesting that this protein targets sphingomyelin.
|
A0A336U966
|
TYRP_ASPTE
|
Tyrosinase P (EC 1.14.18.-)
|
MGFYRNLVLVAASCTQALGLCPAPRCDSPDIRHEWGELSREDRLSYISAVQCMKDRPPELSVEEVPAVRSRYDDFTAVHINYTLQIHNSGIFLPWHRHFIWLWEKALREECGFTGTLPYWDWVMWPNLAASPLFDGTETSLSGDGEFNATEQPTELNPEPGLTITIPRGAGGGCVRTGPFKDWVINMGPFAFNESYEPALPDHAFDYNPRCLVRSLNDWVIQTYNNQTVVDTLLDSPDIVEFQNIMGGFPNPPIPIGPHAMGHRSLGPDMLDFFASPQDPAFWQHHGMVDRLWTVWQDADEPWRRFALNGSSTTWYKDDTPEVTLQTTVEFGILDEPRPLYELMSPTAGPYCYTYT
|
Tyrosinase part of the gene cluster that mediates the biosynthesis of Asp-melanin, a pigment that confers resistance against UV light and hampers phagocytosis by soil amoeba. The nonribosomal peptide synthase melA converts 4-hydroxyphenylpyruvate (4-HPPA) to aspulvinone E. The tyrosinase tyrP then performs hydroxylations of both aromatic moieties of aspulvinone E. The product of tyrP is highly unstable, and, due to the high reactivity of methides and ortho-diquinones, the polymeric Asp-melanin forms spontaneously.
|
A0A343URW6
|
TEX1_CATRO
|
Tabersonine 6,7-epoxidase isoform 1 (EC 1.14.14.-) (Cytochrome P450 71D521)
|
MEFVVSLFAFVVSCFILLKVAKNSKNPKRNTNLELPPGPKQLPIIGNLHQLGGGLAHHVLRNLGKQYGPLMHLKIGELSTIVVSSTEIAKEVFKTHDIHFSNRPSHILVFKIVSYDYKDIVLSQYGKYWRELRKVCNLELLSPNRVQSFRSIREDAVLNMMKSISSNDGKVVNLSEMILSLIYGITARAAFGVWSKKHEEFIRLESEIQRLATTFVLADMFPSIKFLGALSGLRYKVEKVHKKVDDILEGILKEHRRQNNNMTEENGKKDLVDVLLNIQKNGDMETPFTDQHIKAIIFDMFSAGTLTSTIAVDWAMAEMMKNPSVLKRAQDEVRNVYNGIGNVDESKLDELKYLQAVIKETLRIHPGTPIVHRETREECEINGYRIPAKARVMVNAWAISRDPNYWPEPDIFKPERFLGSEVDFKGTHFEYIPFGAGRRICPGISYAIANVQLPLAQLLYHFEWKLPGGMKPEELDMTEILGTAAQRKENLLLIPNSHSCSSLKQV
|
Component of the monoterpenoid indole alkaloids (MIAs, e.g. echitovenine, tabersonine, lochnericine, 19-hydroxytabersonine and horhammericine) biosynthetic pathway MIAs are used in cancer treatment and other medical applications. Cytochrome P450 catalyzing the conversion of tabersonine to lochnericine.
|
A0A383ZFX3
|
ASAH1_BALAS
|
Acid ceramidase (AC) (ACDase) (Acid CDase) (EC 3.5.1.23) (Acylsphingosine deacylase) (N-acylethanolamine hydrolase ASAH1) (EC 3.5.1.-) (N-acylsphingosine amidohydrolase) [Cleaved into: Acid ceramidase subunit alpha; Acid ceramidase subunit beta]
|
MLGRSRLTFVLLSVTVTCSVAQHVPPWTEDCRKSTYPPSGPTYRGPVPWYTINLDLPPYKRWHELMVDKAPALKVIVNYLKNMINAFEPSGKIVQLVDQKLPGLLGSFPGPFEEEMKGIAAVTEIPLGEIILFNIFYEFFTICTSIITEDKEGHLLHARNMDFGVFLGWNVNNNTWVVTEELKPLTVNLDFQRNSKTVFKAAGFAGYVGMLTGFKPGLFSLTLNERFSTNGGFMGVIEWILGKKDAKWIGFIIRSVLENSTSYEEAKTILTKSKILAPAYFILGGSKSGEGCVITRDRVQSLDIYELDPKQGIWYVVQTNYDRWKNPFFLDNRRTPAKMCLNRTTQENISFATMYDVLSTKPVLNKLTVYTALIDVTKGQFETYLRDCPDPCIGW
|
Lysosomal ceramidase that hydrolyzes sphingolipid ceramides into sphingosine and free fatty acids at acidic pH (By similarity). Ceramides, sphingosine, and its phosphorylated form sphingosine-1-phosphate are bioactive lipids that mediate cellular signaling pathways regulating several biological processes including cell proliferation, apoptosis and differentiation (By similarity). Has a higher catalytic efficiency towards C12-ceramides versus other ceramides (By similarity). Also catalyzes the reverse reaction allowing the synthesis of ceramides from fatty acids and sphingosine (By similarity). For the reverse synthetic reaction, the natural sphingosine D-erythro isomer is more efficiently utilized as a substrate compared to D-erythro-dihydrosphingosine and D-erythro-phytosphingosine, while the fatty acids with chain lengths of 12 or 14 carbons are the most efficiently used (By similarity). Has also an N-acylethanolamine hydrolase activity (By similarity). By regulating the levels of ceramides, sphingosine and sphingosine-1-phosphate in the epidermis, mediates the calcium-induced differentiation of epidermal keratinocytes (By similarity). Also indirectly regulates tumor necrosis factor/TNF-induced apoptosis (By similarity). By regulating the intracellular balance between ceramides and sphingosine, in adrenocortical cells, probably also acts as a regulator of steroidogenesis (By similarity).
|
A0A384E129
|
O16A_CONMB
|
Omega-conotoxin MoVIA [Cleaved into: Omega-conotoxin MoVIB]
|
MKLTCVVIVAVLFLTACQLITADDSRSTQRHRALRSTTKLSMSTRCKPPGSKCSPSMRDCCTTCISYTKRCRKYYN
|
[Omega-conotoxin MoVIA]: Omega-conotoxins act at presynaptic membranes, they bind and block voltage-gated calcium channels (Cav). This toxin potently blocks mammalian N-type calcium channels (Cav2.2/CACNA1B) (IC(50)=330 nM on human channels). It is 9-fold more potent in displacing radiolabeled omega-conotoxin GVIA from fish brain membranes than from human SH-SY5Y cells. [Omega-conotoxin MoVIB]: Omega-conotoxins act at presynaptic membranes, they bind and block voltage-gated calcium channels (Cav). This toxin potently blocks mammalian N-type calcium channels (Cav2.2/CACNA1B) (IC(50)=600 nM on human channels). It is 60-fold more potent in displacing radiolabeled omega-conotoxin GVIA from fish brain membranes than from human SH-SY5Y cells. In vivo, when tested on rat neuropathic pain model, this toxin shows an analgesic activity.
|
A0A386CAB9
|
NLRP1_DANRE
|
NACHT, LRR and PYD domains-containing protein 1 homolog (EC 3.4.-.-) [Cleaved into: NACHT, LRR and PYD domains-containing protein 1, C-terminus (NLRP1-CT); NACHT, LRR and PYD domains-containing protein 1, N-terminus (NLRP1-NT)]
|
MSSDYTDRNNLASAIKTLGDMLEKDEAFQRLMYNASTKGEINRGRVNKVFLKALLSAGDKVGEFLNELIDHLNLFKVLGDFSWNPPVLKEAELNERTSQLRTQQHKYVERVSGFSHYGFGETGTPARGDITSPRGPQVASIEEDLATSKLAELLLAVGDHLEKIEKKGQFLPENVERFSLDCFITSESVKLSSEAVELAPCYTEPVIIQRSKEQTEKYCQEYVRSPHTSSHLLSNDKTQSIRIGQLFSPDSDGNTPKTVILCGDSGRGKSFVLEKIILDWVHLEHHFENFDAVFLLKYEELKCLSEEMSLTELLSRSCSLTSDQISQILQLTPEKVLFLIDGIDDFSFNAHIQISSPTDPSQKAPVISIIHCLMRDLLLVESSVIVTTRYTAAAELSSLCKRPQRFTEIEGFSERRVQEYFQKFFQDEQLFKKAYESMKTNETLLTFCSVPLLCWMVCFCLKKDADQVMTELKTTTSIYVHFVSTLLEDHHQSQSFLRSLGQLAEEGMKNRQNLFDEKSVTRTGLDPATRVFMNKIYLKRKKKHELLFKFKHLSFQEFFAALYYIMLDEEESWCKVSELFNMMESEALIHRSPPIFRGRLSNPIPSVMMFLCGLFNKKVSSSLFEKMKSTFSHNVKLKKKELKKKLMKMIPAMIRQYGFELFALHCLYELQDERFVTKVLETHKFIDLSNVSLRSTDCLVLCYCLRLCPNIRELNFMNCDLTAAKLKILQPALGLCETLRFSVEHLSEIGDLIQILSESKILRELKVREDEYGVESPRWSFNLSVTRGDVLLTLSSSEKNPSFSSVLNIRLTCAQSQISRTDWTLFLQRLRKTGTLTEDSSADDDHVSLQLSSLHSVGLKSLDLTLVSLNESWASGIISLIQNCTSLQQLKVSVTGLLLEEGLKLLKKSLTDPHCTVIIEGRRNCSEPSEEHLRQSYEKVEIHFKPKLLEELAELSICNPGSSALNIHCQSCVDVADSDQWVQVEPSVCRGEGGTEFRITTPAGRFQCSRTRMRWVCDGDVTLHYRAVDGHFLNAELERLQCERVAPVLDVNVISGKLEEAHLPHYMCLAESDPALTNAVKLLSVEDEGISLESVELTRFHAKILQPMFSPKTVLVKLGIPVKVHCDLLIFMTHTCPIILNVYFFPSDSLVEENIKTEEKSSHQIKCSRPEAPLQMKKQHSLEVPDAVVQPEAIKLRGNMKPNFFQVKQPVVNDITMILSRVDDQKSVWTGTIWKKLIDIKLNKTESDLFQSGQKHKTSQPAHSFDKAQFFDTHWCNLIKSVENVDTVADKLLQKQIIHEQFYSEIIHHKSTSEESMRKICVIVRKGSAAVKEIFISILLQENPNLLNHLPSSDS
|
Acts as the sensor component of the nlrp1 inflammasome, which mediates inflammasome activation in response to various pathogen-associated signals, leading to subsequent pyroptosis. Inflammasomes are supramolecular complexes that assemble in the cytosol in response to pathogens and other damage-associated signals and play critical roles in innate immunity and inflammation. Acts as a recognition receptor (PRR): recognizes specific pathogens and other damage-associated signals, and mediates the formation of the inflammasome polymeric complex (By similarity). In response to pathogen-associated signals, the N-terminal part of nlrp1 is degraded by the proteasome, releasing the cleaved C-terminal part of the protein (NACHT, LRR and PYD domains-containing protein 1, C-terminus), which polymerizes to initiate the formation of the inflammasome complex: the inflammasome recruits and activate pro-inflammatory caspases (caspa and/or caspb), leading to pyroptosis (By similarity). [NACHT, LRR and PYD domains-containing protein 1 homolog]: Constitutes the precursor of the nlrp1 inflammasome, which mediates autoproteolytic processing within the FIIND domain to generate the N-terminal and C-terminal parts, which are associated non-covalently in absence of pathogens and other damage-associated signals. [NACHT, LRR and PYD domains-containing protein 1, N-terminus]: Regulatory part that prevents formation of the nlrp1 inflammasome: in absence of pathogens and other damage-associated signals, interacts with the C-terminal part of nlrp1 (NACHT, LRR and PYD domains-containing protein 1, C-terminus), preventing activation of the nlrp1 inflammasome (By similarity). In response to pathogen-associated signals, this part is ubiquitinated and degraded by the proteasome, releasing the cleaved C-terminal part of the protein, which polymerizes and forms the nlrp1 inflammasome (By similarity). [NACHT, LRR and PYD domains-containing protein 1, C-terminus]: Constitutes the active part of the nlrp1 inflammasome (By similarity). In absence of pathogens and other damage-associated signals, interacts with the N-terminal part of nlrp1 (NACHT, LRR and PYD domains-containing protein 1, N-terminus), preventing activation of the nlrp1 inflammasome (By similarity). In response to pathogen-associated signals, the N-terminal part of nlrp1 is degraded by the proteasome, releasing this form, which polymerizes to form the nlrp1 inflammasome complex: the nlrp1 inflammasome complex then directly recruits and activates pro-inflammatory caspases (caspa and/or caspb) activation, leading to subsequent pyroptosis (By similarity).
|
A0A386KZ50
|
DABA_PSEMU
|
Magnesium-dependent glutamate N-prenyltransferase (EC 2.5.1.-) (Domoic acid biosynthesis cluster protein A) (PmDabA)
|
MKFATSIVAAIATTGAAFTVIPQKLSHPSQLNALNTMGSISSITAESPKEVLSRVQDAGLTLTNPNDLYWMVDFLKEKYYDNGDYYYPIKTVCDGESIDVKFYCPFEPSLSPHYLELYGSRDERASIYETTMKKYNRINSEKTSAICTPYSSYGDTQIVAYFYSMMYYINDQTAHLKLPESEIESELIDILNDDILIYLNEFMSIFEPEDAQDLERIWDFLDFYQPYFSKVDGKIVLDEKYLVRTPSQMPLIKTICEYVSEQFAPSKNITQVIWEVVRYIKGVKDEIHIRGDKSFTLSLQEYDDFRDKVTASPMAHAVSDLTHERFSYEAYTNPAFMELENRCSEIITYFNDVCTSDRERLDEDPFNSVFILMDLDPSLNFAKSCDVVVEHAYNKMQAFLKLKEEILESASDEEERLALARMIKTREDSLIGYVLHEVCCVEDGYARDHKPLMKAFLEEEITKSLAEKVKFNPVESESVRLN
|
Magnesium-dependent glutamate N-prenyltransferase: part of the gene cluster that mediates the biosynthesis of domoic acid (DA) and derivatives, natural products with neurochemical activity acting as ionotropic glutamate receptor (iGluR) agonists, thus being neurotoxins causing amnesic shellfish poisoning (ASP). Catalyzes the conversion of L-glutamic acid (L-Glu) to N-geranyl-L-glutamic acid (NGG) in the presence of geranyl diphosphate (GPP). Also able to catalyze the formation of farnesyl-L-glutamate from farnesyl diphosphate (FPP). Cannot use dimethylallyl diphosphate (DMAPP) as substrate.
|
A0A396GMX6
|
DELA2_MEDTR
|
DELLA protein 2 (MtDELLA2)
|
MKREHKLEHEDMSSGSGKSGVCWEDDGGGMDELLAVVGYKVKSSDMAEVAQKLEQLEQAMMGNNFHDHDESTIAQHLSNDTVHYNPSDISNWLQTMLSNFDPQPNNPSVNSDDNDLNAIPGKAIYAADEFTSRKRVKRNESVTVTTESTTTRPIMVVETQEKGIRLVHSLMACAEAVEQNNLKMAEALVKQIGYLAVSQEGAMRKVATYFAEGLARRIYGVFPQHSVSDSLQIHFYETCPNLKFAHFTANQAILEAFQGKSSVHVIDFSINQGMQWPALMQALALRPGGPPAFRLTGIGPPASDNSDHLQQVGWRLAQFAQTIHVQFEYRGFVANSLADLDASMLELRSPETESVAVNSVFELHKLNARPGALEKVFSVIRQIRPEIVTVVEQEANHNGPAFLDRFTESLHYYSTLFDSLEGSSVEPQDKAMSEVYLGKQICNVVACEGTDRVERHETLNQWRNRFNSAGFSPVHLGSNAFKQASMLLALFAGGDGYKVEENDGCLMLGWHTRPLIATSAWKLAAANSVVVSH
|
Probable transcriptional regulator that acts as a repressor of the gibberellin (GA) signaling pathway (By similarity). Probably acts by participating in large multiprotein complexes that repress transcription of GA-inducible genes (By similarity). Upon GA application, it is degraded by the proteasome, allowing the GA signaling pathway (By similarity). Together with DELLA1, required to enable arbuscule development during arbuscular mycorrhizal (AM) symbiosis with AM fungi (e.g. Glomus versiforme) via the regulation of RAM1 which, in turn, regulates various AM genes (e.g. NSP1, NSP2, PT4, LEC5, RAM2, EXO70I, STR and RAD1).
|
A0A396IUP1
|
DELA1_MEDTR
|
DELLA protein 1 (MtDELLA1)
|
MKREHQESFGGGVISNNNKTNTNHLNSSKNINFGECSSMQNTNTKQNMWREEKETNGGGMDELLAALGYKVRSSDMADVAQKLEQLEMVMGSAQEEGINHLSSDTVHYDPTDLYSWVQTMLTELNPDSSQINDPLASLGSSSEILNNTFNDDSEYDLSAIPGMAAYPPQEENTAAKRMKTWSEPESEPAVVMSPPPAVENTRPVVLVDTQETGVRLVHTLMACAEAIQQKNLKLAEALVKHISLLASLQTGAMRKVASYFAQALARRIYGNPEETIDSSFSEILHMHFYESSPYLKFAHFTANQAILEAFAGAGRVHVIDFGLKQGMQWPALMQALALRPGGPPTFRLTGIGPPQADNTDALQQVGWKLAQLAQTIGVQFEFRGFVCNSIADLDPNMLEIRPGEAVAVNSVFELHTMLARPGSVEKVLNTVKKINPKIVTIVEQEANHNGPVFVDRFTEALHYYSSLFDSLEGSNSSSNNSNSNSTGLGSPSQDLLMSEIYLGKQICNVVAYEGVDRVERHETLTQWRSRMGSAGFEPVHLGSNAFKQASTLLALFAGGDGYRVEENNGCLMLGWHTRSLIATSAWKLPQNESK
|
Probable transcriptional regulator that acts as a repressor of the gibberellin (GA) signaling pathway (By similarity). Probably acts by participating in large multiprotein complexes that repress transcription of GA-inducible genes (By similarity). Upon GA application, it is degraded by the proteasome, allowing the GA signaling pathway (By similarity). Together with DELLA2, required to enable arbuscule development during arbuscular mycorrhizal (AM) symbiosis with AM fungi (e.g. Glomus versiforme) via the regulation of RAM1 which, in turn, regulates various AM genes (e.g. NSP1, NSP2, PT4, LEC5, RAM2, EXO70I, STR and RAD1).
|
A0A396JG59
|
EX70I_MEDTR
|
Exocyst complex component EXO70I (MtExo70I) (Exocyst subunit Exo70 family protein I)
|
MHKKQLMALLMVPQTSDSQDATITKLESAYSDLESLLRSSKQMEQNIETMETRFDLLHGSITTASRRVHPLQSLSMSRKALDTRINRAISPALALLETFKLAESLQNNLLNLSSKLSTEKTHQKRLSKLLDYMDCVDQLNEAINSISEVVEPVIMRLQEVVEFISRTKAADQYRTQRLREALITLKALYETEVDEMRFEGLLDQALLHMQDEFEVLLLKLKHRKLGDMSHMQNGGEDCDDHFEVSFELGSELEIEVLRRISNTLAANDCLDICIDIYVKVRYKRAAKALMKLNPDYLRTYTPEGIDEMEWENLETSITLWTQHFEVATKKVLLSEKKLCESVLGEIIDGLIHPECFVKISDKIMAVFFRFGEGVARSNKEPQKLFKLLDMFESLEKLKPYVLEIFDGESGEDICARFRELEKLIIDASSKVFWEFGLQIEGNVDGFLPPPQDGSVPKIVRYAVNYLKYLSTENYRTTMAKVLRTELTWKTELMLSSKQSETDEDLLKHAICNVMEALQRNIESKRLSCKDKILVNIFMMNTYWYMYMRTKNTELGDLLGEKYIKESYKAVAEESAYLYQKQAWLVLVKILDQDDDDIKEQKQGKEKSIGRLVNEKIETFFKCLSEICDRHRSFYSIPDVDLREQMRDSTVKLLVPVYAEFLESYSGFLQRKVYPSPQRLQGLLGKAFGSTNDWNLNGGRNSGSLETDIRRSR
|
Component of an exocyst subcomplex specifically required for periarbuscular membrane (PAM) biogenesis during arbuscular mycorrhizal (AM) symbiosis with AM fungi (e.g. Glomus versiforme), especially critical during the early branching phase of arbuscule development probably involved in STR and STR2 delivery into the PAM.
|
A0A3L7I2I8
|
PLPL9_CRIGR
|
85/88 kDa calcium-independent phospholipase A2 (CaI-PLA2) (EC 3.1.1.4) (2-lysophosphatidylcholine acylhydrolase) (EC 3.1.1.5) (Group VI phospholipase A2) (GVI PLA2) (Intracellular membrane-associated calcium-independent phospholipase A2 beta) (iPLA2-beta) (PLA2G6) (Palmitoyl-CoA hydrolase) (EC 3.1.2.2) (Patatin-like phospholipase domain-containing protein 9) (PNPLA9)
|
MQFFGRLVNTLSSVTNLFSNPFRVKEISVADYTSHERVREEGQLILFQNASNRTWDCILVSPRNPHSGFRLFQLESEADALVNFQQFSSQLPPFYESSVQVLHVEVLQHLSDLIRSHPSWTVTHLAVELGIRECFHHSRIISCANSTENEEGCTPLHLACRKGDSEILVELVQYCHAQMDVTDNKGETAFHYAVQGDNSQVLQLLGKNASAGLNQVNKQGLTPLHLACQMGKQEMVRVLLLCNARCNVMGPSGFPIHTAMKFSQKGCAEMIISMDSSQIHSKDPRYGASPLHWAKNAEMARMLLKRGCDVDSTSAAGNTALHVAVMRNRFDCVMVLLTYGANAGTPGEHGNTPLHLAISKDNMEMIKALIVFGAEVDTPNDFGETPAFMASKISKLITRKALLSLLRTVGADHRFPLIQGVPTDQSSAATPHPIFSLDKTQPPAISLNNLELQDLMPISRARKPAFILSSMRDEKRIHDHLLCLDGGGVKGLVIIQLLIAIEKASGVATKDLFDWVAGTSTGGILALAILHSKSMAYMRGVYFRMKDEVFRGSRPYESGPLEEFLKREFGEHTKMTDVKKPKVMLTGTLSDRQPAELHLFRNYDAPEVIREPRFNQNINLKPPTQPADQLVWRAARSSGAAPTYFRPNGRFLDGGLLANNPTLDAMTEIHEYNQDMIRKGQGNKVKKLSIVVSLGTGRSPQVPVTCVDVFRPSNPWELAKTVFGAKELGKMVVDCCTDPDGRAVDRARAWSEMVGIQYFRLNPQLGSDIMLDEVNDAVLVNALWETEVYIYEHREEFQKLVQMLLSP
|
Calcium-independent phospholipase involved in phospholipid remodeling with implications in cellular membrane homeostasis, mitochondrial integrity and signal transduction. Hydrolyzes the ester bond of the fatty acyl group attached at sn-1 or sn-2 position of phospholipids (phospholipase A1 and A2 activity respectively), producing lysophospholipids that are used in deacylation-reacylation cycles. Hydrolyzes both saturated and unsaturated long fatty acyl chains in various glycerophospholipid classes such as phosphatidylcholines, phosphatidylethanolamines and phosphatidates, with a preference for hydrolysis at sn-2 position. Can further hydrolyze lysophospholipids carrying saturated fatty acyl chains (lysophospholipase activity). Upon oxidative stress, contributes to remodeling of mitochondrial phospholipids in pancreatic beta cells, in a repair mechanism to reduce oxidized lipid content (By similarity). Preferentially hydrolyzes oxidized polyunsaturated fatty acyl chains from cardiolipins, yielding monolysocardiolipins that can be reacylated with unoxidized fatty acyls to regenerate native cardiolipin species. Hydrolyzes oxidized glycerophosphoethanolamines present in pancreatic islets, releasing oxidized polyunsaturated fatty acids such as hydroxyeicosatetraenoates (HETEs) (By similarity). Has thioesterase activity toward fatty-acyl CoA releasing CoA-SH known to facilitate fatty acid transport and beta-oxidation in mitochondria particularly in skeletal muscle (By similarity). Plays a role in regulation of membrane dynamics and homeostasis. Selectively hydrolyzes sn-2 arachidonoyl group in plasmalogen phospholipids, structural components of lipid rafts and myelin. Regulates F-actin polymerization at the pseudopods, which is required for both speed and directionality of MCP1/CCL2-induced monocyte chemotaxis (By similarity). Targets membrane phospholipids to produce potent lipid signaling messengers. Generates lysophosphatidate (LPA, 1-acyl-glycerol-3-phosphate), which acts via G-protein receptors in various cell types. Has phospholipase A2 activity toward platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine), likely playing a role in inactivation of this potent pro-inflammatory signaling lipid. In response to glucose, amplifies calcium influx in pancreatic beta cells to promote INS secretion (By similarity).
|
A0A3Q0KDV9
|
SEP10_SCHMA
|
Septin-10 (SmSEPT10)
|
MTADVLKALPPDVRTLKLSGHVGFDSLPDQLVNKAISQGFVFNILCVGETGIGKSTLLETLFNQKFDFSPSNHDLTDPKLKAVTYDLKEANVKLKLTVVETCGYGDQINKENNIKPVVDYIDNQFENYLQEELKMKRSMQAFHDTRVHVCLYFIAPTGHSLKSIDLVAMKKLENKVNVIPVIAKSDTITKSELQKFKARILSEIQSNEIGIYQFPTDDEAVSETNSVMNQHIPFAVVGSSEEVKINGKTVRVRQYPWGSVQVENENHCDFVRLREMLLRVNMEDLRERTHGVHYETYRRQRLIEMGFRDDEKMSLQETYEKRRELQRKELQQKEEEMRQMFVQRVKEKEQVLKEAERELQTKFESLKKTHAEEKKKLEEKKRFLEEEIAAFERRKQLAEQARQGNLTMKKRK
|
Filament-forming GTP-binding protein. Lacks GTPase activity, which is likely due to absence of an essential threonine residue important for hydrolytic activity in septins. May be involved in membrane remodeling, potentially by its nucleotide-dependent cellular membrane association/dissociation ability. Able to bind to phosphatidylinositol-4,5-bisphosphate (PIP2)-containing giant unilamellar vesicles (GUVs), which serve as a model of biological membranes. Self-assembles into ordered cage-like structures on the vesicle membrane. Binds also to 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS)-containing vesicles suggesting the requirement for negatively charged membranes. Is also able to promote deformation of the GUVs.
|
A0A3Q0KR05
|
NPRS_SCHMA
|
Beta-alanyl-bioamine nonribosomal peptide synthetase (EC 6.3.2.-) (Nonribosomal peptide synthetase) (SmNRPS)
|
MPQSTAQLKSPLLHTLLENLTQSSICTSTAIWHVPNPVNFVCNHNENSFDNKNNSVTTITTTDVSTNNHKNTNYDYEQQEQWSNEEINSNQESNEIYTMTFLKLNNAANRVAMNLANYLERKWSSITNKINRTQLNQHSLSIDEPIELRNQSDTVIALFMPPGIDRIVVQIACMKLHLAYMPLDRNVPAGRITQILHKLKPILILIDKDYYDFIYDDDHNDNDKMSDLSSSIDNNNKSLLSRKLSSNDFIIGNLNQLKLTFQLFDVKVYEYIKLMKLSKYYSRSDIYTASIPIRVCLFPFESDPIVLVLFTSGSTSSGPKPVKLRTTQLFNRLEWQWDSTSDMDLPNFENATCNSNTSVKRIGLAKTAWGFVDAFTELFSCLLAGIPVVVPGGSACPSEKSITDVQQLINLTKHFKISHITTVPTQMNLWLKQLRLKPKEIVTSHLSSLRTVIVSGDIVHPKMACEFFQLFKNPEMRLINLYGTTEVAGDVTGLVFRGEIDVKKHTKVVPCGLERENNKSGKPVLSVGTVIQGTAIFIVQDDDDHHLHHEKDNENQPDKWSNPSLSIIGSVDRKPNWDKFPFKILPKGHIGHVCILGQQVSDSASRCQRIESLPEDLNCVDTNKCKSDVESCENNSSKEIRVFMPGDLGFIDPQTNHLYICGRTNELIKINGIRFHANDIDNLFIELKKNWKAKNMTNCTREELLVNKVSETVTLTIQTVHGRDLKLVCFYVLHMNENQNTMNIEPKENYDKLEDLPKQDDFIAVFSHYLPPYLSPTFINIDHIPLMRTSGKVDKEYLRQYYYSKHHCEISEITKVLQPGWVNDPVKHMTENNNSTSDQSFGKNSRDFKLSRGRERARKVLAEVLGIRGPNGDVIPGRPKDDEDFYLLGGDSLLTVLTTEQLRQLGFNVNLDVFTKTGKIGSILTSLQNTESDFLKTQEPFTSDSWTVKEISMNKVLKKSHTCNLINRIPLMEDECYLSPTICPQGSYEIFIEQWNDGNFSVTERHEIVDVLVNAFIEKDRLSHALKLDRTDLTEAIEVFLNAHKSNPGIVLTARYYYENPYEHTFVKNKLVGVIISLPAKHVPSLHLTPKLALVQRFFDECSNKDQFQDISMDNLLATQMVAITSQSPYSKSKYLQYMLSNWKKISLKLLTRLERDLLRIAAKQGYSGVITFNTNEVTEEVCSQLGYKVIQTTMLKSFMNKENLLLLPQYERIRCSYMIKELNPSS
|
Catalyzes the condensation of beta-alanine with tryptamine to form beta-alanyl-tryptamine (BATT). Beta-alanyl-tryptamine is an essential pheromone produced by the male that stimulates female sexual development during pairing.
|
A0A3Q0NBH7
|
PGDA_LISMG
|
Peptidoglycan-N-acetylglucosamine deacetylase PgdA (Peptidoglycan GlcNAc deacetylase) (EC 3.5.1.104) (N-acetylglucosamine de-N-acetylase PgdA) (Peptidoglycan N-deacetylase) (PG N-deacetylase) (Petptidoglycan deacetylase) (PG deacetylase)
|
MKIRWIRLSLVAILIIAVVFIGVIGFQKYQFSKSRNKVIMQMDRLMKDQDGGNFRRLDKKENGVEIISYIPKTTEKKDNEIIQKEIGKATDAEVKKLNRDKETQGIIFYTYQKHRMAEQAISYKAVQSEYVKEGRTKFVLKDKKDICKNIVTDAETGALLTLGEVLIKSNQTKLNLKTAVEEELIKTGDFSLKDVGNLGKIKSLVKWNQTDFEITNSEIILPVKIPGAPEPKKVKVKLADIASSVNKRYLPSSVKVPEVPKAKTNKRIALTFDDGPSSSVTPGVLDTLKRHNVKATFFVLGSSVIQNPGLVKRELEEGHQVGSHSWDHPQLTKQSTQEVYNQILKTQKAVFDQTGYFPTTMRPPYGAVNKQVAEEIGLPIIQWSVDTEDWKYRNAGIVTKKVLAGATDGAIVLMHDIHKTTAASLDTTLTKLKSQGYEFVTIDELYGEKLQIGKQYFDKTDSRMVK
|
Catalyzes the deacetylation of N-acetylglucosamine (GlcNAc) residues in peptidoglycan (PG). Deacetylates also N-acetylated PG. Does not deacetylate N-acetylmuramic acid. Confers host lysozyme resistance. Critical for virulence and escape from innate immune response of the host. Required for intracellular survival of bacteria in macrophages of the host. Required for successful host colonization (By similarity). Controls the production of inflammatory mediators in the bone marrow derived macrophages (BMMs) of the infected mouse (By similarity). Suppresses Toll-like receptor 2 (TLR2)-dependent secretion of interleukin 6 (IL-6) and interferon-beta (IFN-beta) in the macrophages of the infected mouse. May decrease accessibility of pattern recognition receptors (PRRs) such as nucleotide-binding oligomerization domain protein (NOD) 1 of the host to the bacterial cell wall components (By similarity). Protects cells from autolysis induced by lysozyme or by other autolysis-inducing agents.
|
A0A3Q2TTB3
|
PRIPO_CHICK
|
DNA-directed primase/polymerase protein (EC 2.7.7.-)
|
MKRKWEERVKKVEELASYYERNPLPTVYKPRLSKPLQPSRVWKIFCRQADAFRFVKTCKEDVHVFALERNTQNGQRFYLVTTYQELWYYYTKGYKTSLMHCYEVIPEKDACKLYFDLEFYKAANPGADGKDMVAKLIELVSQKLKELYDVNCSARDVLNLDSSTDEKFSRHLIFLPCKTVFKDNIHVGNFVRTILQPAIRLVGSNVAAPIAEGGAGYTSQCSAPTVELDGPLTNLTAVEDASKGWPAIADQRKETETSHHGENSEFSFLIVNNKEGDKQLFVDLGVYTRNRNFRMYKSSKAGKNVILTIAEDNKFVPNCEENVSLEEAYFLSSLVCNVRFEDGTKILSSNFVEEEIKMSAFLRSKTTRSTREPMEGYQESPYPEIDCFVRSLINKDGVQGGIRQWNYFSGEEILVYDISGYRWCENIGRAHRSNNIMILVDLKKEVWYQKCHDPVCREKNFKSQSLPLPSRICLSSLFIEEEDHMVTDERENTEVTSHSNPADLSESSAYLAINTSQDTQWDNASDDAYLVETAEDVELAEAADYSLGYDTEEIPDEVLLEMSWKQDTCSKDDS
|
DNA primase and DNA polymerase required to tolerate replication-stalling lesions by bypassing them. Required to facilitate mitochondrial and nuclear replication fork progression by initiating de novo DNA synthesis using dNTPs and acting as an error-prone DNA polymerase able to bypass certain DNA lesions. Shows a high capacity to tolerate DNA damage lesions such as 8oxoG and abasic sites in DNA (By similarity). Provides different translesion synthesis alternatives when DNA replication is stalled: able to synthesize DNA primers downstream of lesions, such as UV lesions, R-loops and G-quadruplexes, to allow DNA replication to continue. Can also realign primers ahead of 'unreadable lesions' such as abasic sites and 6-4 photoproduct (6-4 pyrimidine-pyrimidinone), thereby skipping the lesion (By similarity). Also able to incorporate nucleotides opposite DNA lesions such as 8oxoG, like a regular translesion synthesis DNA polymerase (By similarity). Also required for reinitiating stalled forks after ultraviolet (UV) damage during nuclear DNA replication (By similarity). Required for mitochondrial DNA (mtDNA) synthesis and replication, by reinitiating synthesis after UV damage or in the presence of chain-terminating nucleotides (By similarity). In addition to its role in DNA damage response, also required to maintain efficient nuclear and mitochondrial DNA replication in unperturbed cells (By similarity).
|
A0A3Q7FGP1
|
IF4E2_SOLLC
|
Eukaryotic translation initiation factor 4E-2 (eIF4E-2) (eIF-4F 25 kDa subunit) (eIF-4F p26 subunit) (mRNA cap-binding protein)
|
MADELNKAALEEYKSSSVEDRGEEGEIVGESDDTASSLGKQITMKHPLEHSWTFWFDNPSGKSKQAAWGSSIRPIYTFSTAEDFWSVYNNIHHPSKLAVGADFHCFKNKIEPKWEDPVCANGGKWTMNFSRGKSDTCWLYTLLALIGEQFDYGDEICGAVINVRVRQEKIALWTRNAANETAQVSIGKQWKEFLDYNDTIGFIFHDDAKKLDRAAKNRYSV
|
Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (By similarity). Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structures (By similarity). Key component of recessive resistance to potyviruses.
|
A0A3Q7GYG2
|
MOMT2_SOLLC
|
Myricetin 7/4'-O-methyltransferase 2 (SlMOMT2a) (SlMOMT2b) (EC 2.1.1.-) (3',4',5'-trimethyl myricetin 7-O-methyltransferase) (EC 2.1.1.-) (3',5'-dimethyl myricetin 7-O-methyltransferase) (7-O-methyl syringetin synthase) (Syringetin 7-O-methyltransferase) (EC 2.1.1.-) (3'-methyl quercetin 4'-O-methyltransferase) (4'-O-methyl isorhamnetin synthase) (Isorhamnetin 4'-O-methyltransferase) (EC 2.1.1.-) (3-methyl quercetin 7-O-methyltransferase) (EC 2.1.1.82) (4'-methyl kaempferol 7-O-methyltransferase) (7-O-methyl kaempferide synthase) (Kaempferide 7-O-methyltransferase) (EC 2.1.1.-) (7-methyl quercetin 4'-O-methyltransferase) (Rhamnacene synthase) (Rhamnetin 4'-O-methyltransferase) (EC 2.1.1.-) (Kaempferol 4'-O-methyltransferase) (Kaempferide synthase) (EC 2.1.1.155) (Myricetin 7-O-methyltransferase) (EC 2.1.1.-) (Quercetin 7-O-methyltransferase) (Rhamnetin synthase) (EC 2.1.1.-)
|
MASNNNICAYELIEAEAQSWDYILSYLRPSCIKCAIQLGIPDILHKNADPIMSLSDLIAALPNLNPSKTTFIPILMRVLVDFGLFNYHQQQGDGYSLTTVGRLLVENHHFGNRSFFLFAQHPVVLNTAASVGDWLKDDLRTAFETADGKSHWDYCGADPEFNGVFNDAMAGDSRLMSNLLISDCCAGVFEGLTSLVDIGGGTGAVAMAIAGAFPSLKCIVLDLPHVIADRKGSGNLEFVAGSMFDKIPHANAILLKWILHNWDDEDCVKLLKKCKESISSRENGGKVIIIDMIMEDNYNNKQLVQSQHLMDLIMRITYASKERTEKEWEKLFLEAGFSGYKIITSLGLRSLIEIYP
|
Flavonoid 7/4'-O-methyltransferase involved in the biosynthesis of polymethoxylated flavonoids natural products such as myricetin derivatives, aroma compounds possessing antioxidant properties and exhibiting pharmacological activities such as anti-carcinogen, anti-viral, anti-thrombotic, anti-diabetic, anti-atherosclerotic, and anti-inflammatory effects. Catalyzes S-adenosylmethionine-dependent regioselective 7/4'-O-methylation of flavonoids active on various hydroxylated flavonoid substrates.
|
A0A3Q7HJG4
|
CURE1_SOLLC
|
Cuscuta receptor 1 (CuRe1) (Leucine-rich repeat receptor-like protein Solyc08g016270) (LRR-RLP Solyc08g016270)
|
MGNIKFLLLVFFLIVVVVNGCWEEERNALLELQTNIMSSNGELLVDWAGYNAAHFVDCCFWDRVKCSLETGRVIKLDLEADFGTGDGWLFNASLFLPFKSLQVLLLSSQNIIGWTKNEGFSKLRQLPNLKEVDLQYNPIDPKVLLSSLCWISSLEVLKLGVDVDTSFSIPMTYNTNMMSKKCGGLSNLRELWFEGYEINDINILSALGELRNLEKLILDDNNFNSTIFSSLKIFPSLKHLNLAANEINGNVEMNDIIDLSNLEYLDLSDNNIHSFATTKGNKKMTSLRSLLLGSSYSNSSRVIRSLKSFSSLKSLSYKNSNLTSPSIIYALRNLSTVEYLYFKGSSLNDNFLPNIGQMTSLKVLNMPSGGNNGTLPNQGWCELKYIEELDFLNNNFVGTLPLCLGNLTSLRWLSLAGNNLHGNIASHSIWRRLTSLEYLDIADNQFDVPLSFSQFSDHKKLIYLNVGYNTIITDTEYQNWIPNFQLEFFAIQRCIALQKLPSFLHYQYDLRILAIEGNQLQGKFPTWLLENNTRLAAIYGRDNAFSGPLKLPSSVHLHLEAVDVSNNKLNGHIPQNMSLAFPKLLSLNMSHNHLEGPIPSKISGIYLTILDLSVNFLSGEVPGDLAVVDSPQLFYLRLSNNKLKGKIFSEEFRPHVLSFLYLNDNNFEGALPSNVFLSSLITLDASRNNFSGEIPGCTRDNRRLLQLDLSKNHLQGLIPVEICNLKIINVLAISENKISGSIPSCVSSLPLKHIHLQKNQLGGELGHVIFNFSSLITLDLRYNNFAGNIPYTIGSLSNLNYLLLSNNKLEGDIPTQICMLNNLSIVDLSFNKLYGPLPPCLGYLTQTKKDAEISWTYFAENYRGSWLNFVIWMRSKRHYHDSHGLLSDLFLMDVETQVQFSTKKNSYTYKGNILKYMSGIDLSSNRLTGEIPVELGNMSNIHALNLSHNHLNGRIPNTFSNLQEIESLDLSCNRLNGSIPVGLLELNSLAVFSVAYNNLSGAVPDFKAQFGTFNKSSYEGNPFLCGYPLDNKCGMSPKLSNTSNINGDEESSELEDIQCFYIGFVVSFGAILLGLAAALCLNRHWRRAWFRMIEALMFYCYYFVLDNIVTPIKSRWYKNVG
|
Involved in plant defense. Contributes to resistance against parasitic plant C.reflexa. Acts as a receptor for the 11 kDa glycine-rich protein (GRP) of C.reflexa inducing immune responses such as emission of stress-related phytohormone ethylene, reactive oxygen species (ROS) release, and hypersensitive cell death. Recognizes a specific pathogen-associated molecular pattern (PAMP), a cysteine-rich peptide 21 (crip21), from GRP located on the cell wall of C.reflexa.
|
A0A3Q7HRZ6
|
MYC2_SOLLC
|
Transcription factor MYC2 (LeMYC2) (SlMYC2) (Basic helix-loop-helix protein 147) (Transcription factor bHLH147) (bHLH transcription factor bHLH147)
|
MTEYSLPTMNLWNNSTSDDNVSMMEAFMSSDLSFWATNNSTSAAVVGVNSNLPHASSNTPSVFAPSSSTSASTLSAAATVDASKSMPFFNQETLQQRLQALIDGARETWTYAIFWQSSVVDFSSPSVLGWGDGYYKGEEDKAKRKLSVSSPAYIAEQEHRKKVLRELNSLISGAPPGTDDAVDEEVTDTEWFFLISMTQSFVNGSGLPGQALYSSSPIWVAGTEKLAASHCERVRQAQGFGLQTIVCIPSANGVVELGSTELIVQSSDLMNKVRVLFNFSNDLGSGSWAVQPESDPSALWLTDPSSSGMEVRESLNTVQTNSVPSSNSNKQIAYGNENNHPSGNGQSCYNQQQQKNPPQQQTQGFFTRELNFSEFGFDGSSNRNGNSSVSCKPESGEILNFGDSTKKSASSANVNLFTGQSQFGAGEENNNKNKKRSATSRGSNEEGMLSFVSGTVLPSSGMKSGGGGGEDSEHSDLEASVVKEADSSRVVEPEKRPRKRGRKPANGREEPLNHVEAERQRREKLNQRFYALRAVVPNVSKMDKASLLGDAISYINELKSKLQNTESDKEDLKSQIEDLKKESRRPGPPPPPNQDLKMSSHTGGKIVDVDIDVKIIGWDAMIRIQCNKKNHPAARLMAALMELDLDVHHASVSVVNDLMIQQATVKMGSRHYTEEQLRVALTSKIAETH
|
Transcriptional activator that binds to the G-box motif (5'-AACGTG-3') found in the promoter of the jasmonate-induced gene LAPA1. Acts as negative regulator of blue light-mediated photomorphogenesis and positively regulates root growth. Promotes growth in response to the phytohormones abscisic acid (ABA) and jasmonate (JA). Binds to the G-box motif (5'-CACGTG-3') of the RBCS-3A gene promoter. Acts downstream of the jasmonate (JA) receptor to orchestrate JA-mediated activation of plant responses. Positively regulates both wound-responsive and pathogen-responsive genes through MYC2-targeted transcription factors (MTFs) involved in early response to JA. With JA2L forms a transcription module that regulates wounding-responsive genes. With ERF.C3 forms a transcription module that regulates pathogen-responsive genes. Plays a critical role in orchestrating JA-mediated defense gene expression during Botrytis cinerea infection. Regulates negatively defense responses to root-knot nematodes, potentially by mediating crosstalk among the hormones strigolactones, abscisic acid (ABA) and jasmonate (JA). Regulates the termination of JA-mediated defense responses by specifically binding the G-box (5'-CACATG-3') motifs in the promoters of MTB1, MTB2 and MTB3, which are transcription factors that negatively regulates JA signaling. May be involved in JA-induced chilling tolerance, possibly by ameliorating the antioxidant enzyme system of fruit and increasing proline and lycopene levels.
|
A0A3Q7HYF0
|
MOMT3_SOLLC
|
Myricetin 3-O-methyltransferase 3 (SlMOMT3) (EC 2.1.1.-) (3',4',5'-trimethyl myricetin 3-O-methyltransferase) (EC 2.1.1.-) (3',5'-dimethyl myricetin 3-O-methyltransferase) (Syringetin 3-O-methyltransferase) (EC 2.1.1.-) (3'-methyl myricetin 3-O-methyltransferase) (Laricitrin 3-O-methyltransferase) (EC 2.1.1.-) (3'-methyl quercetin 3-O-methyltransferase) (Isorhamnetin 3-O-methyltransferase) (EC 2.1.1.-) (4'-methyl kaempferol 3-O-methyltransferase) (Kaempferide 3-O-methyltransferase) (EC 2.1.1.-) (7-methyl quercetin 3-O-methyltransferase) (Rhamnetin 3-O-methyltransferase) (EC 2.1.1.-) (Kaempferol 3-O-methyltransferase) (EC 2.1.1.-) (Quercetin 3-O-methyltransferase) (EC 2.1.1.76)
|
MALSMDNIVISNEEEIYMMKAMHIPCGLYLNMVLRAAIELDLFEIIAKSTTQKLSSYEIASQIPTKNPNASSLVLERILRFLASQSFLTCNITKNDDGNVHTSYNLTPLSQSLILDKDGTSIAPFLLLATDPVAVNSWFHFKDAILEGEIPFNKAHGVHAFEYHGKDSRFNGVFNKAMQNVTCIDMKRVLECYNGFEGVKEIIDVGGGLGISLASIISKYPNIKGINFDLPHVIKDAPTYEGIEHVGGDMFKSVPQRELILLKAILHDWDDECCVKILKNCWRALPKDGKVVVIEQMQPEYPEINLISKNSFSVDMLMMTMLDGGKERTKQQFEDLAKQAGFTVFKIVARAYYCWVIELYK
|
Flavonoid 3-O-methyltransferase involved in the biosynthesis of polymethoxylated flavonoids natural products such as myricetin derivatives, aroma compounds possessing antioxidant properties and exhibiting pharmacological activities such as anti-carcinogen, anti-viral, anti-thrombotic, anti-diabetic, anti-atherosclerotic, and anti-inflammatory effects. Catalyzes S-adenosylmethionine-dependent regioselective 3-O-methylation of flavonoids active on various hydroxylated flavonoid substrates. Active with myricetin, quercetin, kaempferol, 4'-methyl kaempferol (kaempferide), 3'-methyl quercetin (isorhamnetin), 7-methyl quercetin (rhamnetin), 3',4',5'-trimethyl myricetin, 3'-methyl myricetin (laricitrin) and 3',5'-dimethyl myricetin (syringetin), thus producing 3-methyl myricetin, 3-methyl quercetin, 3-methyl kaempferol, 4',3-methyl kaempferol, 3',3-methyl quercetin, 7,3-dimethyl quercetin, 3',4',5',3-tetramethyl myricetin, 3',3-dimethyl myricetin and 3',5',3-dimethyl myricetin, respectively. Inactive with flavonol substrates methylated at the 3-hydroxyl position such as 3-O-methyl quercetin.
|
A0A3Q7I7R4
|
IFI4E_SOLLC
|
Eukaryotic translation initiation factor isoform 4E (SleIF(iso)4E) (eIF(iso)-4E) (eIF-(iso)4F 25 kDa subunit) (eIF-(iso)4F p28 subunit) (mRNA cap-binding protein)
|
MATEAPVEATEIPSVAAAETVEKQPHKLERKWTFWFDNQSKPKQGVAWGSSLRKAYTFETVEEFWSLYDQIFKPSKVTVNADFHLFKAGIEPKWEDPECANGGKWTATSSRKANLETMWLETLMALVGEQFDESEDICGVVASVRRSQDKLSLWTKTATNEAAQMGIGRKWKEIIDAEKISYSFHDDSKRERSAKSRYTV
|
Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (By similarity). Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structures (By similarity). Key component of recessive resistance to potyviruses (Ref.1).
|
A0A3Q8GL18
|
NEPS1_NEPRA
|
(+)-cis,trans-nepetalactol synthase NEPS1 (EC 5.5.1.34) (Nepetalactol-related short-chain dehydrogenase) (Nepetalactol dehydrogenase) (EC 1.1.1.419) (Nepetalactol-related short-chain reductase 1) (Nepetalactol-related SDR1) (NmNEPS1)
|
MASTANPMQVMKKKLEGKVVIVTGGASGIGQTAARVFAQHGARAVVIADIQSEVGKSVAKSIGDPCCYVQCDVSDEEEVKSMIEWTASAYGGLDMMFSNVGIMSKSAQTVMDLDLLEFDKVMRVNARGMAACLKHAARKMVELGTRGTIICTTTPLSSRGGQSMTDYAMSKHAVMGLVRSASIQLGAHGIRVNCVTPSVVLTPLAQRMGLATPDDFHTHFGNFTSLKGVYLTPEQVAEAVVYLASDDAAFITGHDLVLDGGLLCLPFFAPS
|
Bifunctional enzyme that possesses cyclase and dehydrogenase activities. Functions as a non-oxidoreductive cyclase to promote the formation of cis-trans-nepetalactol. Functions as dehydrogenase to oxidize cis-cis-nepetalactol and cis-trans-nepetalactol into nepetalactones, metabolites that are both insect-repellent and have euphoric effect in cats. Binds NAD(+) as classical short-chain dehydrogenase/reductase (SDR), but does not utilize it for its redox-neutral cyclase activity (By similarity).
|
A0A3S5YBC7
|
EGCSE_RHOH1
|
Endoglycoceramidase I (EGCase I) (EC 3.2.1.123)
|
MRKTVVAFAAAIAACSAVLSSTTTSAAPPATPITTLQADGTHLVDGYGRTVLLHGVNNVDKDAPYLPAGETLTPQDIDILVRHGFNTVRLGTSFDALMPQRGQIDEAYLDRLTGVVDALTARGMHVLLDNHQDGLSKAWGGNGFPEWAIESRPREWEPNPGFPLYYLMPSLNAGWDEVWGNTHGALDHLGTALGALAERVEGKPGVMGIELLNEPWPGSRFLSCFPNGCPDFDRTYQAAMQKLTDAVRAQNPTIPVYWEPNVTWNQMMPSNLFAPPVTPALTTADVVFAPHDYCIPSQLAIYLGLPQALRGLCVPQQDLTWSNIDAITERANVPTVITEFGDGDPTVLKNTLARADERFIGWQYWHFGAGNATDPFLGEVGRQLVRTYPQATAGEPGRMIFDADNGDFAYRFTPRAATRPTEIFVSDLHYPDGYAVQVDGGQVTSAPGARIVTVVADGSGPVTVKINRPGSAGAEVPDGPIETSSSGSSGSS
|
Hydrolyzes glycosphingolipids exhibits broad substrate specificity including monosialodihexosylganglioside (GM3), monosialotetrahexosylganglioside (GM1), fucosyl-GM1, lactosylceramide, globotriosylceramide, globotetraosylceramide, ganglioside GD1a, and ganglioside GD1b. No activity towards glucosylceramide and galactosylceramide.
|
A0A3S7WQS5
|
SPCS_LEIDO
|
O-phosphoseryl-tRNA(Sec) selenium transferase (EC 2.9.1.2) (Selenocysteine synthase) (Selenocysteinyl-tRNA(Sec) synthase) (Sep-tRNA:Sec-tRNA synthase)
|
MDDRSLKLAEDFVSARYIEAGRESLRATARIMRSILAQRCCPDEGLTDAAIELILRQLSLMDTNNLAHHVGGGEREGRVVSALVRMRHFHLTHGIGRSGDLFSEQPKAAGSSLLYKITNVLMLDLIRQAGAPSTAAAVVVPMATGMTLALVLRCVAKTHMKELMKEAEAVQLQRTVTKDSTSATSAAPVQEPPMSEADRDRHDRTSLPVPATPRYVIWPRIDQKTALKCIDAAGLVPVPVQLRPAVPLARSAAPCVSTNRDSLDRGQDSIGSPSTPTSSSSLFLECHVDDVAAAVNAVGGPSQVVCVLSTTSCFAPRLPDNTVAIAQYCKKAGIPYVVNNAYGVQSRRIMTRLDAAQRLGRVDFVVQSGDKNFLVPVGGSIICSGDKERCKAVAALYAGRASMSPIVDLFITALSLGRRGMQTLWSDRYKCRARLIRQLRVFARERREVLLVDDSDDDKADEDTVGGSQRTSNAVVPRNDISVAVTMRAYGLPAAEASSSGAQLGSEQAGRVTNWAAARALGAQLFRSAVTGPRVITPAPSTPTTIAGCTFRNYGMHQDREPPCPLLVIACGIGMSESEVDALMARLRDLWPVPA
|
Converts O-phosphoseryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec) required for selenoprotein biosynthesis.
|
A0A411EZW9
|
PA21_AGKPL
|
Acidic phospholipase A2 AplTX-I (svPLA2) (EC 3.1.1.4) (Phosphatidylcholine 2-acylhydrolase)
|
MRTLWIMAVLLLGVEGDLMQFETLIMKIAKRSGMFWYSAYGCYCGWGGQGRPQDATDRCCFVHDCCYGKVTGCDPKLDSYTYSVENGDVVCGGNDPCKKEICECDRAAAICFRDNKVTYDNKYWRFPPQNCKEESEPC
|
Snake venom phospholipase A2 (PLA2) that triggers a high neuromuscular toxicity in chick biventer cervicis preparations, but not in mouse phrenic nerve-diaphragm (PND) preparations, suggesting a selective neurotoxin activity towards birds. Does not induce myotoxic, coagulant, anticoagulant, edema, and antibacterial activities. PLA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides.
|
A0A411MR89
|
SZNF_STRC2
|
Nitrosourea synthase (EC 1.14.13.250) (Multi-domain metalloenzyme SznF)
|
MSHVPPHVPFELSGAELRDAIVQYATNPIYHDNLDWLNHDNPYRRQLRPQVLPHLDYDKVPGRENILNYASLAVQRLLTSVYEADLVFFPKSGLKGKEEDFRAFYSPANRALGERIRPALERYAFGFLDDEVETSGTWTAQSLDAYLDSLDTAGGAEQSPVEKAILGSADRERAARMWLVQFAPDFLSEASPMMRNVLGYYGPAQSEWFKVVIDEYGYGVHDTKHSTLFERTLESVGLESDLHRYWQYYLNSSLLLNNYFHYLGKNHELFFRYVGALYYTESSLVDFCRRADHLLREVFGDTVDTTYFTEHIHIDQHHGRMAREKIIKPLVEAHGDGIIPEIVRGIEEYRVLLEIGDFDFSEQIAWMDAQPELKKLHDPVFEGLKQGKVDAPVAHLVEPRGELSNTHCHDGDELCHIVSGTMRFESGLGSSLTLQAGEGVVIKRNRLHGANIESDECVYEIHSVGDYRKCL
|
Involved in the biosynthesis of the glucosamine-nitrosourea antibiotic streptozotocin (SZN). Catalyzes a complex multi-step reaction: the overall reaction is an oxidative rearrangement of the guanidine group of N(omega)-methyl-L-arginine (L-NMA), generating an N-nitrosourea product. SznF first hydroxylates L-NMA to form N(delta)-hydroxy-N(omega)-methyl-L-arginine (L-HMA), which is further hydroxylated to give N(delta)-hydroxy-N(omega)-hydroxy-N(omega)-methyl-L-arginine (L-DHMA). Subsequently, an oxidative rearrangement converts this intermediate to N(delta)-hydroxy-N(omega)-methyl-N(omega)-nitroso-L-citrulline. This product is unstable, and degrades non-enzymically into nitric oxide and the denitrosated product N(delta)-hydroxy-N(omega)-methyl-L-citrulline.
|
A0A445AGS0
|
IFI4E_ARAHY
|
Eukaryotic translation initiation factor isoform 4E (PeaeIF(iso)4E) (eIF(iso)-4E) (eIF-(iso)4F 25 kDa subunit) (eIF-(iso)4F p28 subunit) (mRNA cap-binding protein)
|
MATETAGAVVESSSAATVPSPAPEAGSKHKLERKWTFWFDNQSKPKQGAAWGTSLREVYTFDTVEEFWCLYDQVFKPSKLPGNADFHLFKTGIEPKWEDPECAKGGKWTVTSNRKANLDNMWLETMMALIGEQFDDAEDICGVVASVRQRQDKLSLWTKTAANEAAQMGIGRKWKEIIDVTDKIIYNFHDDSRTRSSKSRYSV
|
Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (By similarity). Recognizes and binds the 7-methylguanosine-containing mRNA cap during an early step in the initiation of protein synthesis and facilitates ribosome binding by inducing the unwinding of the mRNAs secondary structures (By similarity). Key component of recessive resistance to potyviruses such as peanut stripe virus (PStV).
|
A0A452E9Y6
|
PERL_CAPHI
|
Lactoperoxidase (LPO) (EC 1.11.1.7)
|
MLVCLHLQVFLASVALFEVAASDTIAQAASTTTISDAVSKVKTQVNKAFLDSRTRLKTALSSEAPTTRQLSEYFKHAKGRTRTAIRNGQVWEESLKRLRRDTTLTNVTDPSLDLTALSWEVGCGAPVPLVKCDENSPYRTITGDCNNRRSPALGAANRALARWLPAEYEDGLAVPFGWTQRKTRNGFRVPLAREVSNKIVGYLDEEGVLDQNRSLLFMQWGQIVDHDLDFAPETELGSSEHSKVQCEEYCIQGDNCFPIMFPKNDPKLKTQGKCMPFFRAGFVCPTPPYQSLARDQINAVTSFLDASLVYGSEPSLASRLRNLSSPLGLMAVNQEAWDHGLAYPPFNNVKPSPCEFINTTAHVPCFQAGDSRASEQILLATVHTLLLREHNRLARELKRLNPHWDGEMLYQEARKILGAFIQIITFRDYLPIVLGSEMQKWIPPYQGYNNSVDPRISNVFTFAFRFGHMEVPSTVSRLDENYQPWGPEAELPLHTLFFNTWRIIKDGGIDPLVRGLLAKKSKLMNQNKMVTSELRNKLFQPTHKIHGFDLAAINLQRCRDHGMPGYNSWRGFCGLSQPKTLKGLQAVLKNKILAKKLLDLYKTPDNIDIWIGGNAEPMVERGRVGPLLACLLGRQFQQIRDGDRFWWENPGVFTEKQRDSLQKVSFSRLICDNTHVTKVPLHAFQANNYPHDFVDCSAVDKLDLSPWASREN
|
Heme-containing oxidoreductase which catalyzes the conversion of thiocyanate (SCN(-)) into antimicrobial agent hypothiocyanous acid (OSCN(-)) in the presence of hydrogen peroxide (H2O2) (By similarity). Also involved in the conversion of iodide (I(-)) into hypoiodite (IO(-)) in the presence of H2O2 (By similarity). Responsible for the inactivation of a wide range of micro-organisms and hence, important component of defense mechanism. Shows antibacterial properties against several Gram-positive bacteria including some Staphylococcus species and Gram-negative bacteria including E.coli, P.aeruginosa and some Salmonella species. Inhibits the growth of several fungi including A.niger, Trichoderma species, C.cassicola, P.meadii and C.salmonicolor. Does not have anti-fungal activity towards C.albicans and Pythium species. May protect the udder from infection and may promote growth in newborns. May be implicated in airway host defense against infection (By similarity). May contribute to maintaining an appropriate H2O2 cellular level, therefore protecting cells from H2O2-caused injuries and inflammation (By similarity).
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.