|
|
--- |
|
|
pretty_name: "JBCS2025: AES Experimental Logs and Predictions" |
|
|
license: "cc-by-nc-4.0" |
|
|
configs: |
|
|
- config_name: evaluation_results |
|
|
data_files: |
|
|
- split: evaluation_results |
|
|
path: evaluation_results-*.parquet |
|
|
- config_name: bootstrap_confidence_intervals |
|
|
data_files: |
|
|
- split: bootstrap_confidence_intervals |
|
|
path: bootstrap_confidence_intervals-*.parquet |
|
|
tags: |
|
|
- automatic-essay-scoring |
|
|
- portuguese |
|
|
- text-classification |
|
|
--- |
|
|
|
|
|
# JBCS 2025: Experimental Artefacts for AES in Brazilian Portuguese |
|
|
|
|
|
This repository contains all experimental artefacts (logs, configurations, predictions, and evaluation results) described in the paper: |
|
|
|
|
|
> **Exploring the Usage of LLMs for Automatic Essay Scoring in Brazilian Portuguese Essays** |
|
|
> André Barbosa, Igor Cataneo Silveira, Denis Deratani Mauá |
|
|
> TODO |
|
|
|
|
|
--- |
|
|
|
|
|
## 📦 What's in this dataset repo? |
|
|
|
|
|
This dataset is **not a training dataset**. Instead, it provides comprehensive logs and outputs from experiments evaluating different language models for Automatic Essay Scoring (AES) tasks in Brazilian Portuguese. |
|
|
|
|
|
Specifically, it contains: |
|
|
|
|
|
- 🔁 **JSONL files**: raw predictions from each evaluated model. |
|
|
- 📊 **CSV files**: detailed performance metrics (Quadratic Weighted Kappa, F1-score, etc.). |
|
|
- ⚙️ **YAML files**: complete Hydra configurations for reproducibility. |
|
|
- 📋 **Log files**: logs detailing each evaluation run. |
|
|
|
|
|
--- |
|
|
|
|
|
## 📚 Related Collection |
|
|
|
|
|
All models and datasets related to this work are available in the Hugging Face collection: |
|
|
|
|
|
🔗 [**AES JBCS2025 Collection**](https://huggingface.co/collections/kamel-usp/jbcs2025-67d5e73a4b89c1f0c878159c) |
|
|
|
|
|
--- |
|
|
|
|
|
## 📊 Evaluated Models |
|
|
|
|
|
The table below lists all models trained and evaluated for each essay competence (C1 to C5), along with direct links to their Hugging Face repository pages: |
|
|
|
|
|
| Model | Architecture | Training Type | Link | |
|
|
|-------|--------------|---------------|------| |
|
|
| mbert_base-C1 | Encoder-only | Fine-tuned | [mbert_base-C1](https://huggingface.co/kamel-usp/jbcs2025_mbert_base-C1) | |
|
|
| mbert_base-C2 | Encoder-only | Fine-tuned | [mbert_base-C2](https://huggingface.co/kamel-usp/jbcs2025_mbert_base-C2) | |
|
|
| mbert_base-C3 | Encoder-only | Fine-tuned | [mbert_base-C3](https://huggingface.co/kamel-usp/jbcs2025_mbert_base-C3) | |
|
|
| mbert_base-C4 | Encoder-only | Fine-tuned | [mbert_base-C4](https://huggingface.co/kamel-usp/jbcs2025_mbert_base-C4) | |
|
|
| mbert_base-C5 | Encoder-only | Fine-tuned | [mbert_base-C5](https://huggingface.co/kamel-usp/jbcs2025_mbert_base-C5) | |
|
|
| bertimbau_base-C1 | Encoder-only | Fine-tuned | [bertimbau_base-C1](https://huggingface.co/kamel-usp/jbcs2025_bertimbau_base-C1) | |
|
|
| bertimbau_base-C2 | Encoder-only | Fine-tuned | [bertimbau_base-C2](https://huggingface.co/kamel-usp/jbcs2025_bertimbau_base-C2) | |
|
|
| bertimbau_base-C3 | Encoder-only | Fine-tuned | [bertimbau_base-C3](https://huggingface.co/kamel-usp/jbcs2025_bertimbau_base-C3) | |
|
|
| bertimbau_base-C4 | Encoder-only | Fine-tuned | [bertimbau_base-C4](https://huggingface.co/kamel-usp/jbcs2025_bertimbau_base-C4) | |
|
|
| bertimbau_base-C5 | Encoder-only | Fine-tuned | [bertimbau_base-C5](https://huggingface.co/kamel-usp/jbcs2025_bertimbau_base-C5) | |
|
|
| bertimbau_large-C1 | Encoder-only | Fine-tuned | [bertimbau_large-C1](https://huggingface.co/kamel-usp/jbcs2025_bertimbau_large-C1) | |
|
|
| bertimbau_large-C2 | Encoder-only | Fine-tuned | [bertimbau_large-C2](https://huggingface.co/kamel-usp/jbcs2025_bertimbau_large-C2) | |
|
|
| bertimbau_large-C3 | Encoder-only | Fine-tuned | [bertimbau_large-C3](https://huggingface.co/kamel-usp/jbcs2025_bertimbau_large-C3) | |
|
|
| bertimbau_large-C4 | Encoder-only | Fine-tuned | [bertimbau_large-C4](https://huggingface.co/kamel-usp/jbcs2025_bertimbau_large-C4) | |
|
|
| bertimbau_large-C5 | Encoder-only | Fine-tuned | [bertimbau_large-C5](https://huggingface.co/kamel-usp/jbcs2025_bertimbau_large-C5) | |
|
|
| llama3-8b-C1 | Decoder-only | LoRA | [llama3-8b-C1](https://huggingface.co/kamel-usp/jbcs2025_llama3-8b-C1) | |
|
|
| llama3-8b-C2 | Decoder-only | LoRA | [llama3-8b-C2](https://huggingface.co/kamel-usp/jbcs2025_llama3-8b-C2) | |
|
|
| llama3-8b-C3 | Decoder-only | LoRA | [llama3-8b-C3](https://huggingface.co/kamel-usp/jbcs2025_llama3-8b-C3) | |
|
|
| llama3-8b-C4 | Decoder-only | LoRA | [llama3-8b-C4](https://huggingface.co/kamel-usp/jbcs2025_llama3-8b-C4) | |
|
|
| llama3-8b-C5 | Decoder-only | LoRA | [llama3-8b-C5](https://huggingface.co/kamel-usp/jbcs2025_llama3-8b-C5) | |
|
|
| phi3.5-C1 | Decoder-only | LoRA | [phi3.5-C1](https://huggingface.co/kamel-usp/jbcs2025_phi3.5-C1) | |
|
|
| phi3.5-C2 | Decoder-only | LoRA | [phi3.5-C2](https://huggingface.co/kamel-usp/jbcs2025_phi3.5-C2) | |
|
|
| phi3.5-C3 | Decoder-only | LoRA | [phi3.5-C3](https://huggingface.co/kamel-usp/jbcs2025_phi3.5-C3) | |
|
|
| phi3.5-C4 | Decoder-only | LoRA | [phi3.5-C4](https://huggingface.co/kamel-usp/jbcs2025_phi3.5-C4) | |
|
|
| phi3.5-C5 | Decoder-only | LoRA | [phi3.5-C5](https://huggingface.co/kamel-usp/jbcs2025_phi3.5-C5) | |
|
|
| phi4-C1 | Decoder-only | LoRA | [phi4-C1](https://huggingface.co/kamel-usp/jbcs2025_phi4-C1) | |
|
|
| phi4-C2 | Decoder-only | LoRA | [phi4-C2](https://huggingface.co/kamel-usp/jbcs2025_phi4-C2) | |
|
|
| phi4-C3 | Decoder-only | LoRA | [phi4-C3](https://huggingface.co/kamel-usp/jbcs2025_phi4-C3) | |
|
|
| phi4-C4 | Decoder-only | LoRA | [phi4-C4](https://huggingface.co/kamel-usp/jbcs2025_phi4-C4) | |
|
|
| phi4-C5 | Decoder-only | LoRA | [phi4-C5](https://huggingface.co/kamel-usp/jbcs2025_phi4-C5) | |
|
|
|
|
|
🧠 Additionally, **API-only models** (e.g., DeepSeek-R1, ChatGPT-4o, Sabiá-3) were evaluated but are not hosted on the Hub. Their predictions and logs are still included in this dataset. |
|
|
|
|
|
--- |
|
|
|
|
|
## 🧪 How to Use this Dataset |
|
|
|
|
|
You can easily load the data using Hugging Face datasets library: |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
ds = load_dataset("kamel-usp/jbcs2025_experiments", split="runs") |
|
|
``` |
|
|
|
|
|
--- |
|
|
## 📄 License and Citation |
|
|
|
|
|
This work is licensed under the [Creative Commons Attribution 4.0 International License (CC-BY-4.0)](https://creativecommons.org/licenses/by/4.0/). |
|
|
|
|
|
If you use these artefacts, please cite our paper: |
|
|
|
|
|
```bibtex |
|
|
TODO |
|
|
``` |
|
|
|