File size: 3,901 Bytes
b08521b c35d314 b08521b c35d314 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
---
language:
- en
tags:
- medical
- brain
- mri
- neuroimaging
- pathology
- object-detection
- bounding-boxes
- vision-language
- multimodal
- fine-tuning
task_categories:
- object-detection
- image-to-text
- visual-question-answering
modality:
- image
- text
size_categories:
- 100K<n<1M
pretty_name: BrainBox
---
# BrainBox
A unified medical imaging dataset containing 134,201 brain MRI slices with bounding box annotations, designed for fine-tuning vision-language models (VLMs) on medical image localization tasks.
## Dataset Summary
BrainBox consolidates multiple 2D and 3D medical imaging datasets into a standardized 2D format optimized for VLM training. Each image is paired with structured metadata and precise bounding box annotations for pathological findings.
- **Total Images**: 134,201 2D MRI slices
- **Source Datasets**: 8 publicly available medical imaging datasets
- **Modalities**: T1w, T1c, T2w, FLAIR, DWI, ADC, TRACE
- **Orientations**: Axial, Coronal, Sagittal
- **Pathologies**: Stroke (68,136), Glioma (57,964), Meningioma (4,168), Pituitary Adenoma (3,933)
## Dataset Purpose
This dataset serves as a fine-tuning corpus for vision-language models to perform:
- Medical image interpretation and localization
- Pathology detection with spatial grounding
- Multimodal medical question answering
- Cross-modal medical image understanding
## Data Processing
- **3D to 2D Conversion**: 3D volumes converted to optimal 2D slices using intelligent slice selection
- **Standardization**: Unified schema across heterogeneous source datasets
- **Quality Control**: Verified image paths and validated bounding box annotations
- **Format**: JPG images (256×256) with JSON bounding box metadata
## Usage
```python
from datasets import load_dataset
import json
dataset = load_dataset("liamchalcroft/brainbox")
# Example: Load an image with its annotations
sample = dataset["train"][0]
image = sample["image"]
diagnosis = sample["diagnosis"]
bboxes = json.loads(sample["bounding_boxes"]) # Parse JSON string
```
## Schema
| Field | Type | Description |
|-------|------|-------------|
| `image` | Image | 2D MRI slice (JPG format) |
| `diagnosis` | string | Primary medical diagnosis |
| `pathology_subtype` | string | Specific pathology classification |
| `lesion_type` | string | General lesion category (neoplasm/vascular_lesion) |
| `bounding_boxes` | string | JSON array of lesion bounding boxes |
| `modality` | string | MRI sequence type |
| `orientation` | string | Slice orientation |
| `has_pathology` | bool | Presence of pathological findings |
| `subject_id` | string | Anonymized subject identifier |
| Additional fields | - | Demographics, imaging parameters, anatomical locations |
## Bounding Box Format
```json
[
{
"x_min": 128, "y_min": 62,
"x_max": 139, "y_max": 66,
"width": 11, "height": 4, "area": 44
}
]
```
## Applications
- **VLM Fine-tuning**: Train vision-language models for medical image understanding
- **Object Detection**: Develop pathology localization models
- **Medical AI**: Build diagnostic assistance systems
- **Research**: Cross-modal medical image analysis studies
## Data Distribution
- **Vascular Lesions**: 68,136 images (acute, chronic, subacute stroke)
- **Neoplasms**: 66,065 images (glioma, meningioma, pituitary adenoma)
- **Balanced Orientations**: ~33% each (axial, coronal, sagittal)
- **Multi-modal**: 7 MRI sequence types
## Limitations
- Converted to 2D format (original 3D context reduced)
- Heterogeneous source data quality
- Limited demographic metadata coverage
- Bounding boxes simplified from original segmentation masks
## Citation
If you use this dataset, please cite the original source datasets. This is a processed compilation for VLM research purposes.
## License
Individual source datasets retain their original licenses. Verify licensing terms for your specific use case. |