Add dataset loading script to fix load_dataset functionality
Browse files- skeletal_muscle_atlas.py +250 -0
skeletal_muscle_atlas.py
ADDED
|
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
HuggingFace Dataset Loading Script for Skeletal Muscle Aging Atlas
|
| 3 |
+
|
| 4 |
+
This script defines how to load the skeletal muscle dataset parquet files
|
| 5 |
+
into a structured HuggingFace dataset with multiple configurations.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import datasets
|
| 9 |
+
import pandas as pd
|
| 10 |
+
from typing import Dict, List, Any
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# Dataset metadata
|
| 14 |
+
_CITATION = """
|
| 15 |
+
@article{kedlian2024human,
|
| 16 |
+
title={Human skeletal muscle aging atlas},
|
| 17 |
+
author={Kedlian, Veronika R and Wang, Yaning and Liu, Tianliang and Chen, Xiaoping and Bolt, Liam and Tudor, Catherine and Shen, Zhuojian and Fasouli, Eirini S and Prigmore, Elena and Kleshchevnikov, Vitalii and others},
|
| 18 |
+
journal={Nature Aging},
|
| 19 |
+
volume={4},
|
| 20 |
+
pages={727--744},
|
| 21 |
+
year={2024},
|
| 22 |
+
publisher={Nature Publishing Group},
|
| 23 |
+
doi={10.1038/s43587-024-00613-3},
|
| 24 |
+
url={https://www.nature.com/articles/s43587-024-00613-3}
|
| 25 |
+
}
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
_DESCRIPTION = """
|
| 29 |
+
A comprehensive single-cell RNA-seq atlas of human skeletal muscle aging across the lifespan (15-75 years).
|
| 30 |
+
This dataset provides 183,161 cells from 17 donors with gene expression, metadata, and pre-computed embeddings.
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
_HOMEPAGE = "https://www.muscleageingcellatlas.org/"
|
| 34 |
+
|
| 35 |
+
_LICENSE = "MIT"
|
| 36 |
+
|
| 37 |
+
_URLS = {
|
| 38 |
+
"expression": "skeletal_muscle_10x_expression.parquet",
|
| 39 |
+
"sample_metadata": "skeletal_muscle_10x_sample_metadata.parquet",
|
| 40 |
+
"feature_metadata": "skeletal_muscle_10x_feature_metadata.parquet",
|
| 41 |
+
"projection_pca": "skeletal_muscle_10x_projection_X_pca.parquet",
|
| 42 |
+
"projection_umap": "skeletal_muscle_10x_projection_X_umap.parquet",
|
| 43 |
+
"projection_tsne": "skeletal_muscle_10x_projection_X_tsne.parquet",
|
| 44 |
+
"projection_scvi": "skeletal_muscle_10x_projection_X_scVI.parquet",
|
| 45 |
+
"unstructured_metadata": "skeletal_muscle_10x_unstructured_metadata.json"
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class SkeletalMuscleAtlasConfig(datasets.BuilderConfig):
|
| 50 |
+
"""Configuration for Skeletal Muscle Atlas dataset."""
|
| 51 |
+
|
| 52 |
+
def __init__(self, **kwargs):
|
| 53 |
+
super().__init__(**kwargs)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class SkeletalMuscleAtlas(datasets.GeneratorBasedBuilder):
|
| 57 |
+
"""Skeletal Muscle Aging Atlas dataset."""
|
| 58 |
+
|
| 59 |
+
BUILDER_CONFIGS = [
|
| 60 |
+
SkeletalMuscleAtlasConfig(
|
| 61 |
+
name="expression",
|
| 62 |
+
version=datasets.Version("1.0.0"),
|
| 63 |
+
description="Gene expression matrix (183,161 cells × 29,400 genes)",
|
| 64 |
+
),
|
| 65 |
+
SkeletalMuscleAtlasConfig(
|
| 66 |
+
name="sample_metadata",
|
| 67 |
+
version=datasets.Version("1.0.0"),
|
| 68 |
+
description="Cell-level metadata (age, cell type, sex, etc.)",
|
| 69 |
+
),
|
| 70 |
+
SkeletalMuscleAtlasConfig(
|
| 71 |
+
name="feature_metadata",
|
| 72 |
+
version=datasets.Version("1.0.0"),
|
| 73 |
+
description="Gene-level metadata (symbols, IDs, etc.)",
|
| 74 |
+
),
|
| 75 |
+
SkeletalMuscleAtlasConfig(
|
| 76 |
+
name="projection_pca",
|
| 77 |
+
version=datasets.Version("1.0.0"),
|
| 78 |
+
description="PCA embeddings (50 components)",
|
| 79 |
+
),
|
| 80 |
+
SkeletalMuscleAtlasConfig(
|
| 81 |
+
name="projection_umap",
|
| 82 |
+
version=datasets.Version("1.0.0"),
|
| 83 |
+
description="UMAP embeddings (2D visualization)",
|
| 84 |
+
),
|
| 85 |
+
SkeletalMuscleAtlasConfig(
|
| 86 |
+
name="projection_tsne",
|
| 87 |
+
version=datasets.Version("1.0.0"),
|
| 88 |
+
description="t-SNE embeddings (2D visualization)",
|
| 89 |
+
),
|
| 90 |
+
SkeletalMuscleAtlasConfig(
|
| 91 |
+
name="projection_scvi",
|
| 92 |
+
version=datasets.Version("1.0.0"),
|
| 93 |
+
description="scVI embeddings (30D latent space)",
|
| 94 |
+
),
|
| 95 |
+
SkeletalMuscleAtlasConfig(
|
| 96 |
+
name="all",
|
| 97 |
+
version=datasets.Version("1.0.0"),
|
| 98 |
+
description="All data combined (expression + metadata + embeddings)",
|
| 99 |
+
),
|
| 100 |
+
]
|
| 101 |
+
|
| 102 |
+
DEFAULT_CONFIG_NAME = "all"
|
| 103 |
+
|
| 104 |
+
def _info(self):
|
| 105 |
+
if self.config.name == "expression":
|
| 106 |
+
# Dynamic features for expression matrix
|
| 107 |
+
features = datasets.Features({
|
| 108 |
+
"cell_id": datasets.Value("string"),
|
| 109 |
+
**{f"gene_{i}": datasets.Value("float32") for i in range(29400)}
|
| 110 |
+
})
|
| 111 |
+
elif self.config.name == "sample_metadata":
|
| 112 |
+
features = datasets.Features({
|
| 113 |
+
"cell_id": datasets.Value("string"),
|
| 114 |
+
"Age_group": datasets.Value("string"),
|
| 115 |
+
"age_numeric": datasets.Value("float32"),
|
| 116 |
+
"Sex": datasets.Value("string"),
|
| 117 |
+
"annotation_level0": datasets.Value("string"),
|
| 118 |
+
"annotation_level1": datasets.Value("string"),
|
| 119 |
+
"annotation_level2": datasets.Value("string"),
|
| 120 |
+
"DonorID": datasets.Value("string"),
|
| 121 |
+
"batch": datasets.Value("string"),
|
| 122 |
+
# Add other metadata columns as needed
|
| 123 |
+
})
|
| 124 |
+
elif self.config.name == "feature_metadata":
|
| 125 |
+
features = datasets.Features({
|
| 126 |
+
"gene_id": datasets.Value("string"),
|
| 127 |
+
"SYMBOL": datasets.Value("string"),
|
| 128 |
+
"ENSEMBL": datasets.Value("string"),
|
| 129 |
+
"n_cells": datasets.Value("int32"),
|
| 130 |
+
})
|
| 131 |
+
elif self.config.name.startswith("projection_"):
|
| 132 |
+
# Dynamic features for embeddings
|
| 133 |
+
if self.config.name == "projection_pca":
|
| 134 |
+
n_dims = 50
|
| 135 |
+
elif self.config.name == "projection_scvi":
|
| 136 |
+
n_dims = 30
|
| 137 |
+
else: # umap, tsne
|
| 138 |
+
n_dims = 2
|
| 139 |
+
|
| 140 |
+
features = datasets.Features({
|
| 141 |
+
"cell_id": datasets.Value("string"),
|
| 142 |
+
**{f"dim_{i}": datasets.Value("float32") for i in range(n_dims)}
|
| 143 |
+
})
|
| 144 |
+
else: # "all" configuration
|
| 145 |
+
features = datasets.Features({
|
| 146 |
+
"cell_id": datasets.Value("string"),
|
| 147 |
+
"data_type": datasets.Value("string"),
|
| 148 |
+
"data": datasets.Value("string"), # JSON string of the data
|
| 149 |
+
})
|
| 150 |
+
|
| 151 |
+
return datasets.DatasetInfo(
|
| 152 |
+
description=_DESCRIPTION,
|
| 153 |
+
features=features,
|
| 154 |
+
homepage=_HOMEPAGE,
|
| 155 |
+
license=_LICENSE,
|
| 156 |
+
citation=_CITATION,
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
def _split_generators(self, dl_manager):
|
| 160 |
+
"""Download and prepare the data."""
|
| 161 |
+
|
| 162 |
+
# Download all files
|
| 163 |
+
downloaded_files = dl_manager.download(_URLS)
|
| 164 |
+
|
| 165 |
+
return [
|
| 166 |
+
datasets.SplitGenerator(
|
| 167 |
+
name=datasets.Split.TRAIN,
|
| 168 |
+
gen_kwargs={
|
| 169 |
+
"files": downloaded_files,
|
| 170 |
+
"config_name": self.config.name,
|
| 171 |
+
},
|
| 172 |
+
),
|
| 173 |
+
]
|
| 174 |
+
|
| 175 |
+
def _generate_examples(self, files: Dict[str, str], config_name: str):
|
| 176 |
+
"""Generate examples based on the configuration."""
|
| 177 |
+
|
| 178 |
+
if config_name == "expression":
|
| 179 |
+
# Load expression matrix
|
| 180 |
+
df = pd.read_parquet(files["expression"])
|
| 181 |
+
|
| 182 |
+
for idx, (cell_id, row) in enumerate(df.iterrows()):
|
| 183 |
+
yield idx, {
|
| 184 |
+
"cell_id": str(cell_id),
|
| 185 |
+
**{f"gene_{i}": float(row.iloc[i]) for i in range(len(row))}
|
| 186 |
+
}
|
| 187 |
+
|
| 188 |
+
elif config_name == "sample_metadata":
|
| 189 |
+
# Load sample metadata
|
| 190 |
+
df = pd.read_parquet(files["sample_metadata"])
|
| 191 |
+
|
| 192 |
+
for idx, (cell_id, row) in enumerate(df.iterrows()):
|
| 193 |
+
yield idx, {
|
| 194 |
+
"cell_id": str(cell_id),
|
| 195 |
+
"Age_group": str(row.get("Age_group", "")),
|
| 196 |
+
"age_numeric": float(row.get("age_numeric", 0.0)),
|
| 197 |
+
"Sex": str(row.get("Sex", "")),
|
| 198 |
+
"annotation_level0": str(row.get("annotation_level0", "")),
|
| 199 |
+
"annotation_level1": str(row.get("annotation_level1", "")),
|
| 200 |
+
"annotation_level2": str(row.get("annotation_level2", "")),
|
| 201 |
+
"DonorID": str(row.get("DonorID", "")),
|
| 202 |
+
"batch": str(row.get("batch", "")),
|
| 203 |
+
}
|
| 204 |
+
|
| 205 |
+
elif config_name == "feature_metadata":
|
| 206 |
+
# Load feature metadata
|
| 207 |
+
df = pd.read_parquet(files["feature_metadata"])
|
| 208 |
+
|
| 209 |
+
for idx, (gene_id, row) in enumerate(df.iterrows()):
|
| 210 |
+
yield idx, {
|
| 211 |
+
"gene_id": str(gene_id),
|
| 212 |
+
"SYMBOL": str(row.get("SYMBOL", "")),
|
| 213 |
+
"ENSEMBL": str(row.get("ENSEMBL", "")),
|
| 214 |
+
"n_cells": int(row.get("n_cells", 0)),
|
| 215 |
+
}
|
| 216 |
+
|
| 217 |
+
elif config_name.startswith("projection_"):
|
| 218 |
+
# Load projection data
|
| 219 |
+
projection_key = config_name # e.g., "projection_pca"
|
| 220 |
+
df = pd.read_parquet(files[projection_key])
|
| 221 |
+
|
| 222 |
+
for idx, (cell_id, row) in enumerate(df.iterrows()):
|
| 223 |
+
yield idx, {
|
| 224 |
+
"cell_id": str(cell_id),
|
| 225 |
+
**{f"dim_{i}": float(row.iloc[i]) for i in range(len(row))}
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
elif config_name == "all":
|
| 229 |
+
# Load all data types and provide a unified interface
|
| 230 |
+
sample_idx = 0
|
| 231 |
+
|
| 232 |
+
# Expression data
|
| 233 |
+
expr_df = pd.read_parquet(files["expression"])
|
| 234 |
+
for cell_id, row in expr_df.iterrows():
|
| 235 |
+
yield sample_idx, {
|
| 236 |
+
"cell_id": str(cell_id),
|
| 237 |
+
"data_type": "expression",
|
| 238 |
+
"data": row.to_json(),
|
| 239 |
+
}
|
| 240 |
+
sample_idx += 1
|
| 241 |
+
|
| 242 |
+
# Sample metadata
|
| 243 |
+
meta_df = pd.read_parquet(files["sample_metadata"])
|
| 244 |
+
for cell_id, row in meta_df.iterrows():
|
| 245 |
+
yield sample_idx, {
|
| 246 |
+
"cell_id": str(cell_id),
|
| 247 |
+
"data_type": "sample_metadata",
|
| 248 |
+
"data": row.to_json(),
|
| 249 |
+
}
|
| 250 |
+
sample_idx += 1
|