Datasets:
fen
stringlengths 24
79
| depth
uint8 1
245
| cp
int16 -20,000
20k
β | mate
int8 -75
94
β |
|---|---|---|---|
1B1B1B1B/1kB1B1B1/1B1B1B1B/P1B1B1B1/PB1B1B1B/P1B1BKB1/PB1B1B1B/B1B1B1B1 w - -
| 55
| 6,979
| null |
1B1B1B1B/1kB1B1B1/1B1B1B1B/P1BKB1B1/PB1B1B1B/P1B1B1B1/PB1B1B1B/B1B1B1B1 w - -
| 46
| 6,979
| null |
1B1B1B1B/1kB1B1B1/PB1B1B1B/2BKB1B1/PB1B1B1B/P1B1B1B1/PB1B1B1B/B1B1B1B1 b - -
| 60
| 6,979
| null |
1B1B1B1B/1pBp1p1p/1P1P1P1P/6p1/8/8/3K1k2/8 w - -
| 45
| 0
| null |
1B1B1B1B/1pBp1p1p/1P1P1P1P/8/6p1/4K1k1/8/8 b - -
| 40
| 0
| null |
1B1B1B1B/1pBp1p1p/1P1P1P1P/8/6p1/4K3/7k/8 w - -
| 44
| 0
| null |
1B1B1B1B/1pBp1p1p/1P1P1P1P/8/8/4K1p1/7k/8 b - -
| 44
| 0
| null |
1B1B1B1B/1pBp1p1p/1P1P1P1P/8/8/4K3/6pk/8 w - -
| 44
| 0
| null |
1B1B1B1B/1pBpBpBP/pP1P1Pp1/P1p3P1/KpP3kP/1P6/8/8 w - -
| 32
| 3,161
| null |
1B1B1B1B/1pBpBpBP/pP1P1PpB/6P1/6PK/2p1p1P1/2P1P3/3B2k1 w - -
| 42
| 0
| null |
1B1B1B1B/1pBpBpBP/pP1P1PpB/6P1/6PK/6P1/8/2k5 w - -
| 36
| 0
| null |
1B1B1B1B/1pBpBpBP/pP1P1PpB/P1p3P1/KpP3kP/1P6/8/8 w - -
| 21
| 2,711
| null |
1B1B1B1B/1pBpBpBP/pP1P1PpB/P1p3Pp/KpP4P/1P4Pk/7P/8 w - -
| 85
| 0
| null |
1B1B1B1B/1pBpBpBP/pP1P1PpP/P1p3P1/KpP1P1kP/1P4P1/8/8 w - -
| 29
| 2,505
| null |
1B1B1B1B/1pBpBpBP/pP1P1PpP/P1p3P1/KpP3kP/1P4P1/8/8 w - -
| 90
| null | -12
|
1B1B1B1B/1pBpBpBP/pP1P1PpP/P1p3P1/KpP3kP/1P6/8/8 w - -
| 34
| 1,673
| null |
1B1B1B1B/1pBpBpBP/pP1P1PpP/P1p3Pk/KpP5/1P6/8/8 w - -
| 32
| null | -8
|
1B1B1B1B/1pBpBpBP/pP1P1PpP/P1p3k1/KpP5/1P1p1p2/3P1P2/4B3 w - -
| 34
| 1,764
| null |
1B1B1B1B/2B1B1Bk/1B1BK3/B1B1N1B1/1B1B1B1B/B1B1B1B1/1B1B1B1B/2B1B1B1 b - -
| 99
| null | 6
|
1B1B1B1B/4B1B1/5B1B/p7/8/8/k1K5/8 w - -
| 20
| 1,770
| null |
1B1B1B1B/4B1B1/p4B1B/8/8/8/k7/3K4 w - -
| 22
| 1,798
| null |
1B1B1B1B/4qQ2/2k5/8/8/8/P1P1B1P1/RNBQK1NR w KQ -
| 99
| null | 1
|
1B1B1B1B/4qQ2/2k5/8/8/8/P1PBB1P1/RN1QK1NR b KQ -
| 68
| null | 5
|
1B1B1B1B/4qQ2/8/2k5/8/2N5/P1PBB1P1/R2QK1NR b KQ -
| 99
| null | 1
|
1B1B1B1B/4qQ2/8/2k5/8/8/P1P1B1P1/RNBQK1NR b KQ -
| 99
| null | 1
|
1B1B1B1B/4qQ2/8/2k5/8/8/P1PBB1P1/RN1QK1NR w KQ -
| 99
| null | 1
|
1B1B1B1B/5Q2/3q4/2k5/8/2N5/P1PBB1P1/R2QK1NR w KQ -
| 99
| null | 1
|
1B1B1B1B/6PB/5B2/8/8/8/2k5/7K b - -
| 99
| null | 4
|
1B1B1B1B/6PB/5B2/8/8/8/8/3k3K w - -
| 99
| null | 4
|
1B1B1B1B/7B/4BB2/8/8/8/4k3/7K b - -
| 49
| null | 4
|
1B1B1B1B/7B/4BB2/8/8/8/5k2/7K w - -
| 40
| null | 4
|
1B1B1B1B/7B/5BP1/8/8/1k6/8/7K b - -
| 51
| null | 5
|
1B1B1B1B/7B/5BP1/8/8/8/2k5/7K w - -
| 57
| null | 5
|
1B1B1B1B/8/4BBB1/8/8/8/4k3/7K w - -
| 5
| null | 4
|
1B1B1B1B/8/4BBB1/8/8/8/5k2/7K b - -
| 54
| null | 4
|
1B1B1B1B/8/7B/p7/8/8/8/1k1K4 w - -
| 26
| 1,131
| null |
1B1B1B1B/8/p6B/8/8/8/8/1k1K4 b - -
| 32
| 1,124
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1B1BkB/1KB1B1Bb b - -
| 74
| 0
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1B1BkB/K1B1B1Bb w - -
| 86
| 0
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1B1BkB/K1B1B1Bq w - -
| 94
| 0
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/KB1B1BkB/2B1B1Bq b - -
| 37
| 0
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1BkB1/1B1B1B1B/1KB1B1Bb w - -
| 78
| 0
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1BkB1/1BKB1B1B/2B1B1Bb b - -
| 43
| 0
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1BkB1/KB1B1B1B/2B1B1Bq w - -
| 68
| 0
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1B1BbB/B1B1B1B1/1B1BkB1B/B1B1B1BK b - -
| 99
| null | -1
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1B1BbB/B1B1B1B1/1B1BkBKB/B1B1B1B1 w - -
| 99
| null | -1
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1B1BbB/B1BkB1B1/1B1B1B1B/B1B1B1BK b - -
| 99
| null | -1
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1B1BbB/B1BkB1B1/1B1B1B1B/B1B1BKB1 b - -
| 99
| null | -1
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1B1BbB/B1BkB1B1/1B1B1B1B/B1B1BKB1 w - -
| 99
| null | -2
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1B1BbB/B1BkB1B1/1B1B1BKB/B1B1B1B1 b - -
| 99
| null | -2
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1B1BbB/B1BkB1B1/1B1B1BKB/B1B1B1B1 w - -
| 99
| null | -1
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1B3B/BnBK2B1/1B3B1B/BkB1B1B1 b - -
| 21
| 6,106
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1B3B/BnBK2B1/kB3B1B/B1B1B1B1 w - -
| 23
| 6,065
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1BK2B/B1B1Bn2/1B1B1B1B/B1BkB1B1 b - -
| 27
| 6,173
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1BK2B/B1B1Bn2/1BkB1B1B/B1B1B1B1 w - -
| 25
| 6,171
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1BK3/B1B1BnB1/1B1B1B1B/B1BkB1B1 w - -
| 24
| 6,273
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1BK3/B1B1BnB1/1B1BkB1B/B1B1B1B1 b - -
| 25
| 6,210
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1BKB1B/B1B1B1Bb/1B1B1B1B/B1B1B1Bk b - -
| 64
| 0
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1BKB1n/B1B1B3/1B1BkB1B/B1B1B1B1 b - -
| 27
| 6,194
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1BKB2/B1B1Bn2/1B1BkB1B/B1B1B1B1 w - -
| 26
| 6,175
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1BkB1B/B1B1B1B1/1BKB1B1B/2B1B1Bb w - -
| 67
| 0
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1BkBbB/B1B1B1B1/1B1B1B1B/B1B1BKB1 w - -
| 99
| null | -2
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1B1BkBbB/B1B1B1B1/1B1B1BKB/B1B1B1B1 b - -
| 99
| null | -2
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1BKB3B/B1B3B1/kB3B1B/B1n1B1B1 w - -
| 20
| 6,027
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1BKB3B/BnB3B1/kB3B1B/B1B1B1B1 b - -
| 24
| 6,089
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1BkB1B1B/B1BbB1B1/1B1K1B1B/B1B1B1B1 b - -
| 60
| 0
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1BkB1BbB/B1B1B1B1/1B1B1B1B/B1B1BKB1 b - -
| 99
| null | -3
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/1BkB1BbB/B1B1B1B1/1B1B1BKB/B1B1B1B1 w - -
| 99
| null | -3
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/RB1BRB1B/BkBRBRBR/RBRBRB1B/BRBRBRBK b - -
| 30
| -50
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/RB1BRB1B/BkBRBRBR/RBRBRBKB/BRBRBRB1 w - -
| 27
| -1,982
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/RBkBRB1B/BRBRBRBR/RBRBRBKB/BRBRBRB1 b - -
| 34
| -1,825
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1B1/kB1BRB1B/B1BRBRBR/RBRBRB1B/BRBRBRBK w - -
| 32
| -27
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1BQ/1B1B1B1B/B1BKB1B1/1B1B1BkB/B1B1B1B1 w - -
| 20
| null | 2
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1BQ/1B1B1B1B/B1BKBkB1/1B1B1B1B/B1B1B1B1 b - -
| 1
| null | 2
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1Bb/1B1B1B1B/B1B1B1B1/kB1BKB1B/B1B1B1B1 w - -
| 99
| null | -7
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1Bb/1B1B1B1B/B1BkB1B1/1B1B1B1B/B1B1BKB1 w - -
| 99
| null | -2
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1Bb/1B1B1B1B/B1BkB1B1/1B1B1BKB/B1B1B1B1 b - -
| 99
| null | -2
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1Bb/1BkB1B1B/B1B1B1B1/1B1B1B1B/B1B1BKB1 b - -
| 99
| null | -3
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1B1Bb/1BkB1B1B/B1B1B1B1/1B1B1BKB/B1B1B1B1 w - -
| 99
| null | -3
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1BkB1/1B1B1B1B/B1B3B1/1B1BPB1B/B1B1B1BK w - -
| 95
| null | 25
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1BkB1/1B1B1B1B/B1B3B1/1B1BPBKB/B1B1B1B1 b - -
| 38
| null | 24
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1BkB1/1B1B1B1B/B1BKB1B1/1B1B1B1B/B1B1BQB1 w - -
| 20
| null | 9
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1BkB1/1B1B1B1B/B1BKB1BQ/1B1B1B1B/B1B1B1B1 b - -
| 1
| null | 8
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B1BkB1/1B1BPB1B/B1B3B1/1B1B1B1B/B1B1B1BK b - -
| 26
| 6,158
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B3B1/1B1B1B1B/B1BK2B1/1B1n1B1B/BkB1B1B1 b - -
| 20
| 6,120
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B3B1/1B1B1B1B/BnBK2B1/1B3B1B/BkB1B1B1 w - -
| 23
| 6,108
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B3B1/1B1BK2B/B1B1BnB1/1B1B1B1B/BkB1B1B1 w - -
| 24
| 6,175
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B3B1/1B1BK2B/B1B1BnB1/1BkB1B1B/B1B1B1B1 b - -
| 23
| 6,175
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B3B1/1B1BKB1B/B1B2nB1/1B1B1B1B/BkB1B1B1 b - -
| 20
| 6,162
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1B3B1/1B1BKB1B/B1B3B1/1B1n1B1B/BkB1B1B1 w - -
| 23
| 6,176
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1BBB1B1/1B1B1BkB/B1B1BRBR/1B1B1B1B/B1B1BRBK w - -
| 20
| null | 22
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1BBB1Bk/1B1B1B1B/B1B1BRBR/1B1B1B1B/B1B1BRBK b - -
| 26
| 1
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1BBBbBk/1B1B1B1B/B1B1BRBR/1B1B1BKB/B1B1BRB1 w - -
| 65
| 0
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1BBBkB1/1B1B1B1B/B1B1BRBR/1B1B1B1B/B1B1BRBK b - -
| 24
| 176
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1BBBkB1/1B1B1B1B/B1B1BRBR/1B1B1BKB/B1B1BRB1 w - -
| 22
| 41
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1BKB1B1/1B1B1B1B/B1B1B1B1/1B1BkB1B/B1BbB1B1 w - -
| 80
| null | -9
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1BKB1B1/1B1B1B1B/B1B1B1B1/1BbB1B1B/BkB1B1B1 b - -
| 34
| null | -6
|
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1BKB1B1/1B1B1B1B/B1B1B1Bb/1B1B1B1B/B1B1B1Bk w - -
| 81
| 0
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1BKB1B1/1B1B1B1n/B1B1B3/1B1BkB1B/B1B1B1B1 w - -
| 26
| 6,201
| null |
1B1B1B1B/B1B1B1B1/1B1B1B1B/B1BKB1B1/1B1B1B1n/B1B1Bk2/1B1B1B1B/B1B1B1B1 b - -
| 26
| 6,200
| null |
Lichess Chess Positions: ML-Ready Deduplicated Evaluations
Dataset Description
A curated dataset of 316,072,343 unique chess positions with Stockfish evaluations, optimized for training neural networks. This is a deduplicated, ML-ready version of the Lichess evaluation database.
Why This Dataset?
While Lichess provides deduplicated evaluations in JSONL.zst format, and HuggingFace hosts the full (non-deduplicated) version, this dataset offers:
Unique advantages:
- β Deduplicated (like Lichess source)
- β Parquet format (5-10x faster loading than JSONL.zst)
- β Split into 10 manageable parts (easy incremental downloads)
- β Optimized for ML (removed unnecessary columns)
- β 80% smaller than non-deduplicated version
Comparison:
| Source | Duplicates | Format | Size | Splits |
|---|---|---|---|---|
| Lichess DB | None | JSONL.zst | ~17GB (~83GB decompressed) | 1 file |
| HF Lichess | Yes (784M rows) | Parquet | 30GB+ | 16 parts |
| This dataset | None (316M rows) | Parquet | ~7GB | 10 parts |
Perfect for researchers who want deduplicated data without decompressing 80GB+ JSONL.zst files.
Dataset Structure
Data Instance
One row of the dataset looks like this:
{
"fen": "2bq1rk1/pr3ppn/1p2p3/7P/2pP1B1P/2P5/PPQ2PB1/R3R1K1 w - -",
"depth": 36,
"cp": 311,
"mate": null
}
Data Fields
| Field | Type | Description |
|---|---|---|
fen |
string | Chess position in FEN notation (pieces, active color, castling rights, en passant) |
depth |
int | Search depth reached by Stockfish engine |
cp |
int | Centipawn evaluation (-β to +β). null if mate is certain |
mate |
int | Moves until mate. null if mate is not certain |
Data Splits
The dataset is split into 10 equally-sized parts (~32M positions each) for convenient downloading:
from datasets import load_dataset
# Load full dataset (all 10 parts)
dataset = load_dataset("mateuszgrzyb/lichess-stockfish-normalized", split="train")
# Or load specific percentage (faster download)
dataset = load_dataset("mateuszgrzyb/lichess-stockfish-normalized", split="train[:10%]")
# Or load by number of examples
dataset = load_dataset("mateuszgrzyb/lichess-stockfish-normalized", split="train[:1000000]")
Dataset Creation
Source Data
Original data: Lichess evaluation database
- Source: Lichess analysis board
- Evaluator: Stockfish (various versions and depths)
- Collection: Produced by Lichess users running Stockfish in browser during analysis
- Update frequency: Monthly (last updated: November 2025)
Preprocessing Pipeline
The preprocessing was performed as part of the Searchless Chess project:
- Data Loading: Loaded in parts de-normalized posiotions with evaluations
Lichess/chess-position-evaluations(~37GB) - Deduplication: For each unique FEN, retained only the evaluation with maximum
depth- Original: 784M rows with duplicates
- After dedup: 316M unique positions
- Column removal: Removed
lineandknodesfields (not needed for position evaluation) - Format conversion: JSONL (original file in Lichess DataBase) β Parquet (faster I/O for ML workflows)
- Partitioning: Split into 10 equal parts for manageable downloads
Size reduction: ~83GB (decompressed JSONL) | ~37GB (Parquet) β ~7GB (deduplicated Parquet) = over 80% reduction
Quality Metrics
- Unique positions: 316,072,343
- Average file size: ~650MB per part
Usage Example
Basic Loading
from datasets import load_dataset
# Load full dataset
dataset = load_dataset("mateuszgrzyb/lichess-stockfish-normalized", split="train")
# Access data
print(f"Total: {len(dataset)}")
print(dataset[0])
Incremental Loading (Memory-Efficient)
from datasets import load_dataset
# Load one part at a time
for i in range(10):
part = load_dataset(
"mateuszgrzyb/lichess-stockfish-normalized",
split=f"train[{i*10}%:{(i+1)*10}%]"
)
# Process part...
train_on_part(part)
Citation
If you use this dataset in your research, please cite:
@dataset{grzyb2025lichess,
author = {Grzyb, Mateusz},
title = {Lichess Chess Positions: ML-Ready Deduplicated Evaluations},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/datasets/mateuszgrzyb/lichess-stockfish-normalized}}
}
And cite the original Lichess database:
@misc{lichess2024database,
author = {Lichess},
title = {Lichess Elite Database},
year = {2024},
url = {https://database.lichess.org}
}
Related Resources
- π Project Repository: Searchless Chess on GitHub
- π Inspiration: Grandmaster-Level Chess Without Search (DeepMind, 2024)
- βοΈ Original Dataset: Lichess Evaluation Database
- π€ Non-Deduplicated Version: Lichess/chess-position-evaluations
License
This dataset is licensed under CC BY 4.0.
Original data from Lichess is licensed under CC0 1.0 (Public Domain).
Dataset Curator
Created by Mateusz Grzyb as part of the Searchless Chess project.
Changelog
v1.0.0 (November 2025)
- Initial release
- 316M deduplicated positions
- 10-part split in Parquet format
Dataset last updated: November 2025
- Downloads last month
- 145