Dataset Viewer
The dataset could not be loaded because the splits use different data file formats, which is not supported. Read more about the splits configuration. Click for more details.
Couldn't infer the same data file format for all splits. Got {NamedSplit('train'): (None, {}), NamedSplit('test'): ('text', {})}
Error code:   FileFormatMismatchBetweenSplitsError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

πŸ”₯ Reproduce Website Demos

  1. [Environment Set Up] Our environment setup is identical to CogVideoX. You can refer to their configuration to complete the environment setup.

    conda create -n robomaster python=3.10
    conda activate robomaster
    
  2. Robotic Manipulation on Diverse Out-of-Domain Objects.

    python inference_inthewild.py \
        --input_path demos/diverse_ood_objs \
        --output_path samples/infer_diverse_ood_objs \
        --transformer_path ckpts/RoboMaster \
        --model_path ckpts/CogVideoX-Fun-V1.5-5b-InP
    
  3. Robotic Manipulation with Diverse Skills

    python inference_inthewild.py \
        --input_path demos/diverse_skills \
        --output_path samples/infer_diverse_skills \
        --transformer_path ckpts/RoboMaster \
        --model_path ckpts/CogVideoX-Fun-V1.5-5b-InP
    
  4. Long Video Generation in Auto-Regressive Manner

    python inference_inthewild.py \
        --input_path demos/long_video \
        --output_path samples/long_video \
        --transformer_path ckpts/RoboMaster \
        --model_path ckpts/CogVideoX-Fun-V1.5-5b-InP
    

πŸš€ Benchmark Evaluation (Reproduce Paper Results)

β”œβ”€β”€ RoboMaster
  β”œβ”€β”€ eval_metrics
      β”œβ”€β”€ VBench
      β”œβ”€β”€ common_metrics_on_video_quality
      β”œβ”€β”€ eval_traj
      β”œβ”€β”€ results
          β”œβ”€β”€ bridge_eval_gt
          β”œβ”€β”€ bridge_eval_ours
          β”œβ”€β”€ bridge_eval_ours_tracking

(1) Inference on Benchmark & Prepare Evaluation Files

  1. Generating bridge_eval_ours. (Note that the results may vary slightly across different computing machines, even with the same seed. We have prepared the reference files under eval_metrics/results)
    cd RoboMaster/
    python inference_eval.py
    
  2. Generating bridge_eval_ours_tracking: Install CoTracker3, and then estimate tracking points with grid size 30 on bridge_eval_ours.

(2) Evaluation on Visual Quality

  1. Evaluation of VBench metrics.

    cd eval_metrics/VBench
    python evaluate.py \
        --dimension aesthetic_quality imaging_quality temporal_flickering motion_smoothness subject_consistency background_consistency \
        --videos_path ../results/bridge_eval_ours \
        --mode=custom_input \
        --output_path evaluation_results
    
  2. Evaluation of FVD and FID metrics.

    cd eval_metrics/common_metrics_on_video_quality
    python calculate.py -v1_f ../results/bridge_eval_ours -v2_f ../results/bridge_eval_gt
    python -m pytorch_fid eval_1 eval_2
    

(3) Evaluation on Trajectory (Robotic Arm & Manipulated Object)

  1. Estimation of TrajError metrics. (Note that we exclude some samples listed in failed_track.txt, due to failed estimation by CoTracker3)

    cd eval_metrics/eval_traj
    python calculate_traj.py \
        --input_path_1 ../results/bridge_eval_ours \
        --input_path_2 ../results/bridge_eval_gt \
        --tracking_path ../results/bridge_eval_ours_tracking \
        --output_path evaluation_results
    
  2. Check the visualization videos under evaluation_results. We blend the trajectories of robotic arm and object throughout the entire video for better illustration.

Downloads last month
14