Datasets:
Dataset Viewer
The dataset viewer is not available for this split.
Cannot load the dataset split (in streaming mode) to extract the first rows.
Error code: StreamingRowsError
Exception: CastError
Message: Couldn't cast
audio_file: string
text: string
length: double
audio: null
transcription: null
-- schema metadata --
pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 604
to
{'audio': Audio(sampling_rate=None, decode=True, stream_index=None), 'transcription': Value('string')}
because column names don't match
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise
return get_rows(
File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator
return func(*args, **kwargs)
File "/src/services/worker/src/worker/utils.py", line 77, in get_rows
rows_plus_one = list(itertools.islice(ds, rows_max_number + 1))
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2361, in __iter__
for key, example in ex_iterable:
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1882, in __iter__
for key, pa_table in self._iter_arrow():
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1914, in _iter_arrow
pa_table = cast_table_to_features(pa_table, self.features)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2192, in cast_table_to_features
raise CastError(
datasets.table.CastError: Couldn't cast
audio_file: string
text: string
length: double
audio: null
transcription: null
-- schema metadata --
pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 604
to
{'audio': Audio(sampling_rate=None, decode=True, stream_index=None), 'transcription': Value('string')}
because column names don't matchNeed help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Vedavani: A Benchmark Corpus for ASR on Vedic Sanskrit Poetry
Vedavani is the first benchmark dataset for automatic speech recognition (ASR) on Vedic Sanskrit poetry, consisting of richly annotated verses from the Rig Veda and Atharva Veda. This corpus captures the unique prosodic structure, phonetic complexity, and chanting style found in traditional Vedic recitation.
π Paper: Vedavani: A Benchmark Corpus for ASR on Vedic Sanskrit Poetry (ACL 2025)
π GitHub Repository: https://github.com/SujeetNlp/Vedavani
π License: Apache License 2.0
π¦ Dataset Contents
This repository contains:
train.csvβ Metadata for training setvalidation.csvβ Metadata for validation settest.csvβ Metadata for test setAudio_filesβ Audio files in WAV format (segmented and aligned) [Due to hugging face restrictions files are organized in folder containing maximum 9000 files each. While using them in training/testing kindly move all the files in one single directory.]READMEβ Textual documentation
Each CSV includes:
path: Relative path to audio filetranscription: Ground-truth text in Devanagari script, including prosodic markers
π Dataset Statistics
| Property | Value |
|---|---|
| Total Duration | ~54 hours |
| Total Samples | 30,779 |
| Verses from Rig Veda | 20,782 |
| Verses from Atharva Veda | 9,997 |
| Avg. Audio Length | 6.36 seconds |
| Vocabulary Size | 64,082 unique words |
Data Splits
| Split | # Samples |
|---|---|
| Train | 24,623 |
| Validation | 3,078 |
| Test | 3,078 |
Use Cases
Vedavani is particularly useful for:
- Fine-tuning and benchmarking ASR models (e.g., Whisper, IndicWhisper, Wav2Vec2)
- Studying phonetic alignment in Sanskrit poetry
- Low-resource speech processing
- Prosody-aware speech models
Citation
@article{
title={Vedavani: A Benchmark Corpus for ASR on Vedic Sanskrit Poetry},
author={Sujeet Kumar, Pretam Ray, Abhinay Beerukuri, Shrey Kamoji, Manoj Balaji Jagadeeshan, and Pawan Goyal},
journal={https://arxiv.org/pdf/2506.00145v1},
year={2025}
}
- Downloads last month
- 138