mls_sidon / README.md
Wataru's picture
Add files using upload-large-folder tool
c7ddfbd verified
|
raw
history blame
2.73 kB
# MLS-Sidon
## Overview
This dataset is a **cleansed version of Multilingual LibriSpeech (MLS)** with **Sidon** speech restoration mode for **Speech Synthesis** and **Spoken Language Modeling**.
The dataset is provided in **[WebDataset](https://github.com/webdataset/webdataset) format** for efficient large-scale training.
- **Source**: [Multilingual LibriSpeech](https://www.openslr.org/94/)
- **Languages**: English, German, French, Spanish, Italian, Portuguese, Polish, Dutch
- **Format**: WebDataset (`.tar` shards)
- **License**: [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/)
---
## Dataset Structure
Each sample in the dataset contains:
- **`flac`** — audio file (48 kHz, single channel)
- **`meta.json`** *(optional)* — metadata including language, speaker ID, and original MLS reference
Example (inside a `.tar` shard):
```
000001.flac
000001.meta.json
000002.flac
000002.meta.json
...
````
---
## How to Use
### With 🤗 Datasets
You can load the WebDataset directly with Hugging Face’s `datasets` library:
```python
from datasets import load_dataset
ds = load_dataset(
"webdataset",
data_files="https://huggingface.co/datasets/<username>/<repo>/resolve/main/{lang}_shard-{000000..000099}.tar",
split="train",
streaming=True
)
for sample in ds:
audio = sample["flac"]
text = sample["txt"]
print(audio, text)
````
Replace `{lang}` with the language (e.g., `english`, `german`).
---
### With WebDataset (PyTorch)
```python
import webdataset as wds
urls = "https://huggingface.co/datasets/<username>/<repo>/resolve/main/english_shard-{000000..000099}.tar"
dataset = (
wds.WebDataset(urls)
.decode()
.to_tuple("flac", "txt")
)
for audio, text in dataset:
...
```
---
## Citation
If you use this dataset, please cite Sidon and the original MLS paper:
```
@misc{nakata2025sidonfastrobustopensource,
title={Sidon: Fast and Robust Open-Source Multilingual Speech Restoration for Large-scale Dataset Cleansing},
author={Wataru Nakata and Yuki Saito and Yota Ueda and Hiroshi Saruwatari},
year={2025},
eprint={2509.17052},
archivePrefix={arXiv},
primaryClass={cs.SD},
url={https://arxiv.org/abs/2509.17052},
}
```
```
@inproceedings{pratap2020mls,
title = {MLS: A Large-Scale Multilingual Dataset for Speech Research},
author = {Pratap, Vineel and Xu, Qiantong and Sriram, Anuroop and others},
booktitle = {Interspeech},
year = {2020}
}
```
---
## License
This dataset is released under [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/).
---
## Acknowledgements
* **Original data**: [Multilingual LibriSpeech (MLS)](https://www.openslr.org/94/)