Datasets:
metadata
license: cc-by-4.0
task_categories:
- text-to-speech
language:
- en
- fr
- de
- es
- it
- pl
- nl
- pt
tags:
- speech
- synthetic
size_categories:
- 100M<n<1B
configs:
- config_name: english
data_files:
- split: train
path: english/**/train*.tar.gz
- split: test
path: english/**/test*.tar.gz
- split: valid
path: english/**/dev*.tar.gz
- config_name: german
data_files:
- split: train
path: german/train*.tar.gz
- split: test
path: german/test*.tar.gz
- split: valid
path: german/dev*.tar.gz
- config_name: french
data_files:
- split: train
path: french/train*.tar.gz
- split: test
path: french/test*.tar.gz
- split: valid
path: french/dev*.tar.gz
- config_name: spanish
data_files:
- split: train
path: spanish/train*.tar.gz
- split: test
path: spanish/test*.tar.gz
- split: valid
path: spanish/dev*.tar.gz
- config_name: portuguese
data_files:
- split: train
path: portuguese/train*.tar.gz
- split: test
path: portuguese/test*.tar.gz
- split: valid
path: portuguese/dev*.tar.gz
- config_name: italian
data_files:
- split: train
path: italian/train*.tar.gz
- split: test
path: italian/test*.tar.gz
- split: valid
path: italian/dev*.tar.gz
- config_name: polish
data_files:
- split: train
path: polish/train*.tar.gz
- split: test
path: polish/test*.tar.gz
- split: valid
path: polish/dev*.tar.gz
- config_name: dutch
data_files:
- split: train
path: dutch/train*.tar.gz
- split: test
path: dutch/test*.tar.gz
- split: valid
path: dutch/dev*.tar.gz
MLS-Sidon
Overview
This dataset is a cleansed version of Multilingual LibriSpeech (MLS) with Sidon speech restoration mode for Speech Synthesis and Spoken Language Modeling.
The dataset is provided in WebDataset format for efficient large-scale training.
- Source: Multilingual LibriSpeech
- Languages: English, German, French, Spanish, Italian, Polish, Dutch, Portuguese
- Format: WebDataset (
.tarshards) - License: CC-BY-4.0
Dataset Structure
Each sample in the dataset contains:
flac— audio file (48 kHz, single channel)metadata.json(optional) — metadata including language, speaker ID, and original MLS reference
Example (inside a .tar shard):
000001.flac
000001.metadata.json
000002.flac
000002.metadata.json
...
How to Use
With 🤗 Datasets
You can load the WebDataset directly with Hugging Face’s datasets library:
import datasets
from IPython.display import Audio
from huggingface_hub import hf_hub_download
import yaml
base_url = "https://huggingface.co/datasets/sarulab-speech/mls_sidon/resolve/main/"
language = 'english'
split = 'test'
data_file_path = hf_hub_download(repo_id="sarulab-speech/mls_sidon", repo_type="dataset", filename="paths.yaml")
paths = yaml.load(open(data_file_path, "r"), Loader=yaml.FullLoader)
ds = datasets.load_dataset("webdataset", data_files=[base_url + p for p in paths['english'][split]],streaming=True)['train']
sample = next(iter(ds))
audio = sample['flac']
print(sample['metadata.json'])
Audio(audio['array'], rate=audio['sampling_rate'])
Replace language with the language (e.g., english, german).
Citation
If you use this dataset, please cite Sidon and the original MLS paper:
@misc{nakata2025sidonfastrobustopensource,
title={Sidon: Fast and Robust Open-Source Multilingual Speech Restoration for Large-scale Dataset Cleansing},
author={Wataru Nakata and Yuki Saito and Yota Ueda and Hiroshi Saruwatari},
year={2025},
eprint={2509.17052},
archivePrefix={arXiv},
primaryClass={cs.SD},
url={https://arxiv.org/abs/2509.17052},
}
@inproceedings{pratap2020mls,
title = {MLS: A Large-Scale Multilingual Dataset for Speech Research},
author = {Pratap, Vineel and Xu, Qiantong and Sriram, Anuroop and others},
booktitle = {Interspeech},
year = {2020}
}
License
This dataset is released under CC-BY-4.0.
Acknowledgements
- Original data: Multilingual LibriSpeech (MLS)