Dataset Viewer
Auto-converted to Parquet
SMILES
stringlengths
13
165
Ki
float64
-4.93
1.6
CC(=O)c1ccc(OCCCc2c[nH]cn2)cc1
-1.939519
c1ccc(COCCCc2c[nH]cn2)cc1
-0.415974
CC(=O)c1ccc(SCCc2c[nH]cn2)cc1
-0.041393
c1ccc(OCCCc2c[nH]cn2)cc1
-1.431364
CC(=O)c1ccc(SCCCc2c[nH]cn2)cc1
-1.255273
Ic1ccc(COCCCc2c[nH]cn2)cc1
0.199971
c1ccc(CCCCc2c[nH]cn2)cc1
-0.322219
N=C(NCc1ccc(Cl)cc1)SCCCc1c[nH]cn1
-0.202069
CC(=O)c1ccc(OCCCCc2c[nH]cn2)cc1
-1.278754
COc1ccc(OCCCc2c[nH]cn2)cc1
-1.672098
CC(=O)c1ccc(OCCc2c[nH]cn2)cc1
-1.623249
NCCCCCCc1c[nH]cn1
-1
C=C(c1c[nH]cn1)C1CCNCC1
-0.599992
c1nc(CCC2CCNCC2)c[nH]1
-1.299943
c1nc(CCCC2CCCNC2)c[nH]1
-1.920019
c1nc(CCCC2CCCCN2)c[nH]1
-1.970021
NCCCc1c[nH]cn1
-1.695044
NCCc1c[nH]cn1
-1.018807
C(=C1CCNCC1)c1c[nH]cn1
-0.785259
NCCCCc1c[nH]cn1
-0.610873
O=C(c1c[nH]cn1)C1CCNCC1
-3.59
NCCCCCc1c[nH]cn1
-0.700011
c1nc(CC2CCCCN2)c[nH]1
-3.059999
C1=C(c2c[nH]cn2)CCNC1
-3.63
c1nc(C2CCNCC2)c[nH]1
-2.939998
c1nc(CC2CCCNC2)c[nH]1
-1.830011
c1nc(CCC2CCCNC2)c[nH]1
-2.26
c1nc(CCC2CCCCN2)c[nH]1
-3.45
c1nc(CC2CCNCC2)c[nH]1
0.357997
NCC1CC1c1c[nH]cn1
-1.549984
c1nc(CCCC2CCNCC2)c[nH]1
-0.650016
CC1CCCC(C)N1CCCOc1ccc(-c2ccc(C#N)cc2)cc1
-0.330008
Cc1cccn2cc(-c3ccc(OCCCN4CCOCC4)cc3)nc12
-1.90309
N#Cc1ccc(-c2ccc(OCCCN3CCCC(O)C3)cc2)cc1
-1.480007
Cc1ccn2cc(-c3ccc(OCCCN4CCCCC4)cc3C)nc2c1
-0.30103
N#Cc1ccc(-c2ccc(OCCCN3CCOCC3)cc2)cc1
-1.560026
CC1CCCCN1CCCOc1ccc(-c2ccc(C#N)cc2)cc1
-0.849972
CCCCN(CCCC)CCCOc1ccc(-c2cn3cc(Br)ccc3n2)cc1
-3.462398
CCCCN(CCCC)CCCOc1ccc(-c2cn3cccc(O)c3n2)cc1
-3.176091
Cc1cccn2cc(-c3ccc(OCCCN(C)C)cc3)nc12
-1.113943
N#Cc1ccc(-c2ccc(OCCCN3CC4CNCC4C3)cc2)cc1
-1.180126
CCOC(=O)N1CCN(CCCOc2ccc(-c3ccc(C#N)cc3)cc2)CC1
-3
CC1CCN(CCCOc2ccc(-c3ccc(C#N)cc3)cc2)CC1
-1.139879
CCCCN(CCCC)CCCOc1ccc(-c2cn3cccc([N+](=O)[O-])c3n2)cc1
-4.041393
CCCN(CCC)CCCOc1ccc(-c2cn3cccc(C)c3n2)cc1
-1.633468
Cc1ccn2cc(-c3ccc(OCCCN4CCCCC4)cc3)nc2c1
-0.30103
Cc1ccn2cc(-c3ccc(CCCCN4CCCCC4)cc3)nc2c1
-1.230449
Cc1cccn2cc(-c3ccc(OCCCN4CCCCC4)cc3)nc12
-0.477121
CC1CCCN(CCCOc2ccc(-c3ccc(C#N)cc3)cc2)C1
-0.229938
CCCCN(CCCC)CCCOc1ccc(-c2cn3cccc(C)c3n2)cc1OC
-3.230449
CN[C@@H]1CCN(CCCOc2ccc(-c3ccc(C#N)cc3)cc2)C1
-0.929981
CCCCN(CCCC)CCCOc1c(OC)cc(-c2cn3cccc(C)c3n2)cc1OC
-3.518514
Cc1ccn2cc(-c3ccc(/C=C/CCN4CCCCC4)cc3)nc2c1
-1.342423
c1ccn2cc(-c3ccc(OCCCN4CCCCC4)cc3)nc2c1
-0.778151
CCCCN(CCCC)CCCOc1ccc(-c2nc3c(C)cccn3c2C)cc1
-2.939519
COc1cc(-c2cn3ccc(C)cc3n2)ccc1OCCCN1CCCCC1
-1.838849
Cc1ccn2cc(-c3ccc(C#CCCN4CCCCC4)cc3)nc2c1
-0.845098
N#Cc1ccc(-c2ccc(OCCCN3CCCNCC3)cc2)cc1
-0.920019
CCCCN(CCCC)CCCOc1ccc(-c2cn3c(C)cc(C)cc3n2)cc1
-3.30103
Cc1cccn2cc(-c3ccc(OCCCNCc4ccccc4)cc3)nc12
-3.732394
Cc1cccn2cc(-c3ccc(OCCCN(C(C)c4ccccc4)C(C)c4ccccc4)cc3)nc12
-3.60206
Cc1cccn2cc(-c3ccc(OCCCn4ccnc4)cc3)nc12
-3
Cc1cc(-c2cn3ccccc3n2)ccc1OCCCN1CCCCC1
-1.447158
N#Cc1ccc(-c2ccc(OCCCN3CCNCC3)cc2)cc1
-2.070001
N#Cc1ccc(-c2ccc(OCCCN3CCC(O)CC3)cc2)cc1
-2.090011
C[C@@]1(O)CCN(CCCOc2ccc(-c3ccc(C#N)cc3)cc2)C1
-0.610021
CCCCN(CCCC)CCCOc1ccc(-c2cn3cccc(C)c3n2)c(C)c1
-3.623249
CCCCN(CCCC)CCCOc1ccc(-c2cn3cc(C)ccc3n2)cc1
-3.278754
Cc1cccn2cc(-c3ccc(NS(=O)(=O)CCCN4CCCCC4)cc3)nc12
-2.69897
N#Cc1ccc(-c2ccc(OCCCN3CC[C@@H](N)C3)cc2)cc1
-0.790004
CCCCN(CCCC)CCCOc1ccc(-c2cn3ccccc3n2)cc1
-3.113943
Cc1cccn2cc(-c3ccc(NCCCN4CCCCC4)cc3)nc12
-1.176091
CCOC(=O)N1CCN(CCCOc2ccc(-c3cc[nH]c3)cc2)CC1
-3
CCCCCN(CCCCC)CCCOc1ccc(-c2cn3cccc(C)c3n2)cc1
-3.897627
N#Cc1ccc(-c2ccc(OCCCN3CCC(N)CC3)cc2)cc1
-2.300008
CCCCN(CCCC)CCCOc1ccc(-c2cn3ccc(C)cc3n2)cc1
-3.041393
Cc1ccn2cc(-c3ccc(OCCCN4CCCCC4)cc3F)nc2c1
-1
Cc1cccn2cc(-c3ccc(NC(=O)CCN4CCCCC4)cc3)nc12
-2.477121
CCCCN(CCCC)CCCOc1ccc(-c2cn3cc(Br)cc(Br)c3n2)cc1
-3.681241
CCCCN(CCCC)CCCOc1ccc(-c2cn3cccc(OCc4ccccc4)c3n2)cc1
-3.380211
Cc1ccn2cc(-c3ccc(OCCCN4CCCCCC4)cc3)nc2c1
-0.778151
CN(C)[C@@H]1CCN(CCCOc2ccc(-c3ccc(C#N)cc3)cc2)C1
-0.528531
C[C@@H]1CC[C@@H](C)N1CCCOc1ccc(-c2ccc(C#N)cc2)cc1
0.169989
CCCCN(CCCC)CCCOc1ccc(-c2cn3cccc(C)c3n2)cc1C
-3.90309
Cc1ccn2cc(-c3ccc(OCCCN4CCCC4)cc3)nc2c1
-0.69897
N#Cc1ccc(-c2ccc(OCCCN3CCCC3)cc2)cc1
-0.859978
CCN(CC)CCCOc1ccc(CN2CCCCC2)cc1
-0.089905
c1ccc(CC2CCN(Cc3ccc(OCCCN4CCCCC4)cc3)CC2)cc1
-0.180126
c1ccc(NCc2ccc(OCCCN3CCCCC3)cc2)cc1
-0.920019
CN1CCN(Cc2ccc(OCCCN3CCCCC3)cc2)CC1
-0.130012
c1ccc2c(c1)CCC2NCc1ccc(OCCCN2CCCCC2)cc1
0.079981
c1cc(OCCCN2CCOCC2)ccc1CN1CCCCC1
-0.360025
c1cc(OCCCC2CCCCC2)ccc1CN1CCCCC1
-2.800002
c1ccc2c(c1)CCN(Cc1ccc(OCCCN3CCCCC3)cc1)C2
-0.229938
NC(=O)C1CCN(Cc2ccc(OCCCN3CCCCC3)cc2)CC1
0.019997
CN1CCN(CCCOc2ccc(CN3CCCCC3)cc2)CC1
-1.130012
c1cc(OCCCN2CCCCC2)ccc1CNC1CCCCC1
0.289967
c1cc(OCCN2CCCCC2)ccc1CN1CCCCC1
-0.950024
CN(C)CCOc1ccc(CN2CCCCC2)cc1
-0.58995
CN(C)Cc1ccc(OCCCN2CCCCC2)cc1
0.029979
End of preview. Expand in Data Studio

MoleculeACE ChEMBL264 Ki

ChEMBL264 dataset, originally part of ChEMBL database [1], processed in MoleculeACE [2] for activity cliff evaluation. It is intended to be use through scikit-fingerprints library.

The task is to predict the inhibitor constant (Ki) of molecules against the Histamine h3 receptor target.

Characteristic Description
Tasks 1
Task type regression
Total samples 2862
Recommended split activity_cliff
Recommended metric RMSE

References

[1] B. Zdrazil et al., “The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods,” Nucleic Acids Research, vol. 52, no. D1, Nov. 2023, doi: https://doi.org/10.1093/nar/gkad1004. ‌

[2] D. van Tilborg, A. Alenicheva, and F. Grisoni, “Exposing the Limitations of Molecular Machine Learning with Activity Cliffs,” Journal of Chemical Information and Modeling, vol. 62, no. 23, pp. 5938–5951, Dec. 2022, doi: https://doi.org/10.1021/acs.jcim.2c01073. ‌

Downloads last month
63