esci-us-small / build.py
shuttie's picture
add title/text columns, enfore same schema as wands
13a3650
import argparse
import polars as pl
import os
MAPPING = {"E": 3, "S": 2, "C": 1, "I": 0}
COLUMNS = [
"product_description",
"product_bullet_point",
"product_brand",
"product_color",
]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--source", type=str, required=True, help="path to parquet files"
)
parser.add_argument("--small", action="store_true", help="select small subset")
parser.add_argument("--split", type=str, choices=["train", "test"], required=True)
parser.add_argument(
"--locale",
type=str,
default="us",
choices=["us", "es", "jp"],
help="language to select",
)
args = parser.parse_args()
products = pl.read_parquet(
os.path.join(args.source, "shopping_queries_dataset_products.parquet")
)
examples = pl.read_parquet(
os.path.join(args.source, "shopping_queries_dataset_examples.parquet")
)
merged = examples.join(products, on=pl.col("product_id"))
merged = merged.select(pl.all().exclude("^__index_level_.*$"))
merged = merged.with_columns(
label=pl.col("esci_label").replace(MAPPING).cast(pl.Int32),
id=pl.col("example_id").cast(pl.String),
query_id=pl.col("query_id").cast(pl.String),
product_id=pl.col("product_id").cast(pl.String),
title=pl.col("product_title"),
text=pl.concat_str(
[pl.lit(f"{col}: ") + pl.col(col).fill_null("") for col in COLUMNS],
separator="\n",
),
)
print(f"loaded {len(merged)} source rows")
merged = merged.filter(pl.col("split") == args.split)
print(f"split filtering done: {len(merged)} rows")
merged = merged.filter(pl.col("small_version") == args.small)
print(f"size filtering done: {len(merged)} rows")
merged = merged.filter(pl.col("product_locale") == args.locale)
print(f"locale filtering done: {len(merged)} rows")
merged.write_ndjson(f"{args.split}.jsonl")